Show simple item record

dc.contributor.authorUngrin, M. D.
dc.contributor.authorChaturvedi, R. R.
dc.contributor.authorZandstra, P. W.
dc.contributor.authorChen, C. S.
dc.contributor.authorStevens, Kelly R.
dc.contributor.authorNg, Shengyong
dc.contributor.authorChristine, Kathleen
dc.contributor.authorLi, Cheri Yingjie
dc.contributor.authorCarvalho, Brian
dc.contributor.authorSchwartz, Robert E.
dc.contributor.authorBhatia, Sangeeta N
dc.date.accessioned2014-04-11T16:56:22Z
dc.date.available2014-04-11T16:56:22Z
dc.date.issued2013-05
dc.date.submitted2012-09
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/86113
dc.description.abstractComplex tissues contain multiple cell types that are hierarchically organized within morphologically and functionally distinct compartments. Construction of engineered tissues with optimized tissue architecture has been limited by tissue fabrication techniques, which do not enable versatile microscale organization of multiple cell types in tissues of size adequate for physiological studies and tissue therapies. Here we present an ‘Intaglio-Void/Embed-Relief Topographic molding’ method for microscale organization of many cell types, including induced pluripotent stem cell-derived progeny, within a variety of synthetic and natural extracellular matrices and across tissues of sizes appropriate for in vitro, pre-clinical, and clinical studies. We demonstrate that compartmental placement of non-parenchymal cells relative to primary or induced pluripotent stem cell-derived hepatocytes, compartment microstructure, and cellular composition modulate hepatic functions. Configurations found to sustain physiological function in vitro also result in survival and function in mice for at least 4 weeks, demonstrating the importance of architectural optimization before implantation.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB008396)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (DK56966)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (Cancer Center Support Core Grant P30-CA14051)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (1F32DK091007)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.). Ruth L. Kirschstein National Research Service Award (1F32DK095529)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Program (1122374)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms2853en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourcePMCen_US
dc.titleInVERT molding for scalable control of tissue microarchitectureen_US
dc.typeArticleen_US
dc.identifier.citationStevens, K. R., M. D. Ungrin, R. E. Schwartz, S. Ng, B. Carvalho, K. S. Christine, R. R. Chaturvedi, et al. “InVERT Molding for Scalable Control of Tissue Microarchitecture.” Nature Communications 4 (May 14, 2013): 1847.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.contributor.mitauthorStevens, Kelly R.en_US
dc.contributor.mitauthorSchwartz, Roberten_US
dc.contributor.mitauthorNg, Shengyongen_US
dc.contributor.mitauthorCarvalho, B.en_US
dc.contributor.mitauthorChristine, Kathleenen_US
dc.contributor.mitauthorLi, Cheri Yingjieen_US
dc.contributor.mitauthorBhatia, Sangeeta N.en_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsStevens, K. R.; Ungrin, M. D.; Schwartz, R. E.; Ng, S.; Carvalho, B.; Christine, K. S.; Chaturvedi, R. R.; Li, C. Y.; Zandstra, P. W.; Chen, C. S.; Bhatia, S. N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1293-2097
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record