Show simple item record

dc.contributor.authorAshenberg, Orr
dc.contributor.authorSnow, Hana R.
dc.contributor.authorSkerker, Jeffrey M.
dc.contributor.authorCapra, Emily Jordan
dc.contributor.authorPerchuk, Barrett
dc.contributor.authorSeid, Charlotte Allen
dc.contributor.authorLaub, Michael T
dc.date.accessioned2014-04-11T19:17:33Z
dc.date.available2014-04-11T19:17:33Z
dc.date.issued2012-11
dc.date.submitted2012-10
dc.identifier.issn0950382X
dc.identifier.issn1365-2958
dc.identifier.urihttp://hdl.handle.net/1721.1/86127
dc.description.abstractSignal transduction proteins are often multi-domain proteins that arose through the fusion of previously independent proteins. How such a change in the spatial arrangement of proteins impacts their evolution and the selective pressures acting on individual residues is largely unknown. We explored this problem in the context of bacterial two-component signalling pathways, which typically involve a sensor histidine kinase that specifically phosphorylates a single cognate response regulator. Although usually found as separate proteins, these proteins are sometimes fused into a so-called hybrid histidine kinase. Here, we demonstrate that the isolated kinase domains of hybrid kinases exhibit a dramatic reduction in phosphotransfer specificity in vitro relative to canonical histidine kinases. However, hybrid kinases phosphotransfer almost exclusively to their covalently attached response regulator domain, whose effective concentration exceeds that of all soluble response regulators. These findings indicate that the fused response regulator in a hybrid kinase normally prevents detrimental cross-talk between pathways. More generally, our results shed light on how the spatial properties of signalling pathways can significantly affect their evolution, with additional implications for the design of synthetic signalling systems.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Award)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherWiley Blackwellen_US
dc.relation.isversionofhttp://dx.doi.org/10.1111/mmi.12064en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceLaub via Courtney Crummetten_US
dc.titleSpatial tethering of kinases to their substrates relaxes evolutionary constraints on specificityen_US
dc.typeArticleen_US
dc.identifier.citationCapra, Emily J., Barrett S. Perchuk, Orr Ashenberg, Charlotte A. Seid, Hana R. Snow, Jeffrey M. Skerker, and Michael T. Laub. “Spatial Tethering of Kinases to Their Substrates Relaxes Evolutionary Constraints on Specificity.” Molecular Microbiology 86, no. 6 (December 2012): 1393–1403.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.approverLaub, Michael T.en_US
dc.contributor.mitauthorCapra, Emily Jordanen_US
dc.contributor.mitauthorPerchuk, Barretten_US
dc.contributor.mitauthorAshenberg, Orren_US
dc.contributor.mitauthorSeid, Charlotte Allenen_US
dc.contributor.mitauthorSnow, Hana R.en_US
dc.contributor.mitauthorLaub, Michael T.en_US
dc.relation.journalMolecular Microbiologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCapra, Emily J.; Perchuk, Barrett S.; Ashenberg, Orr; Seid, Charlotte A.; Snow, Hana R.; Skerker, Jeffrey M.; Laub, Michael T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8288-7607
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record