Show simple item record

dc.contributor.authorGluesing-Luerssen, Heide
dc.contributor.authorForney, G. David, Jr.
dc.date.accessioned2014-04-14T15:34:09Z
dc.date.available2014-04-14T15:34:09Z
dc.date.issued2012-09
dc.date.submitted2012-08
dc.identifier.issn0018-9448
dc.identifier.issn1557-9654
dc.identifier.urihttp://hdl.handle.net/1721.1/86145
dc.descriptionOriginal manuscript: August 30, 2012en_US
dc.description.abstractThis paper investigates properties of realizations of linear or group codes on general graphs that lead to local reducibility. Trimness and properness are dual properties of constraint codes. A linear or group realization with a constraint code that is not both trim and proper is locally reducible. A linear or group realization on a finite cycle-free graph is minimal if and only if every local constraint code is trim and proper. A realization is called observable if there is a one-to-one correspondence between codewords and configurations, and controllable if it has independent constraints. A linear or group realization is observable if and only if its dual is controllable. A simple counting test for controllability is given. An unobservable or uncontrollable realization is locally reducible. Parity-check realizations are controllable if and only if they have independent parity checks. In an uncontrollable tail-biting trellis realization, the behavior partitions into disconnected sub-behaviors, but this property does not hold for nontrellis realizations. On a general graph, the support of an unobservable configuration is a generalized cycle.en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/tit.2012.2217312en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleCodes on Graphs: Observability, Controllability, and Local Reducibilityen_US
dc.typeArticleen_US
dc.identifier.citationForney, Jr., G. David, and Heide Gluesing-Luerssen. “Codes on Graphs: Observability, Controllability, and Local Reducibility.” IEEE Trans. Inform. Theory 59, no. 1 (n.d.): 223–237.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorForney, G. David, Jr.en_US
dc.relation.journalIEEE Transactions on Information Theoryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsForney, Jr., G. David; Gluesing-Luerssen, Heideen_US
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record