MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On memory in exponentially expanding spaces

Author(s)
Stanford, Douglas; Roberts, Daniel Adam
Thumbnail
DownloadRoberts_On memory.pdf (545.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We examine the degree to which fluctuating dynamics on exponentially expanding spaces remember initial conditions. In de Sitter space, the global late-time configuration of a free scalar field always contains information about early fluctuations. By contrast, fluctuations near the boundary of Euclidean Anti-de Sitter may or may not remember conditions in the center, with a transition at Δ = d/2. We connect these results to literature about statistical mechanics on trees and make contact with the observation by Anninos and Denef that the configuration space of a massless dS field exhibits ultrametricity. We extend their analysis to massive fields, finding that preference for isosceles triangles persists as long as Δ− < d/4.
Description
Author's final manuscript: May 28, 2013
Date issued
2013-06
URI
http://hdl.handle.net/1721.1/86201
Department
Massachusetts Institute of Technology. Center for Theoretical Physics; Massachusetts Institute of Technology. Department of Physics
Journal
Journal of High Energy Physics
Publisher
Springer-Verlag
Citation
Roberts, Daniel A., and Douglas Stanford. “On Memory in Exponentially Expanding Spaces.” J. High Energ. Phys. 2013, no. 6 (June 2013).
Version: Author's final manuscript
ISSN
1029-8479
1126-6708

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.