Show simple item record

dc.contributor.authorRubinstein, Michael
dc.contributor.authorLiu, Ce
dc.contributor.authorSand, Peter
dc.contributor.authorDurand, Fredo
dc.contributor.authorFreeman, William T.
dc.date.accessioned2014-04-17T19:58:23Z
dc.date.available2014-04-17T19:58:23Z
dc.date.issued2011-06
dc.identifier.isbn978-1-4577-0394-2
dc.identifier.urihttp://hdl.handle.net/1721.1/86212
dc.description.abstractMotions can occur over both short and long time scales. We introduce motion denoising, which treats short-term changes as noise, long-term changes as signal, and re-renders a video to reveal the underlying long-term events. We demonstrate motion denoising for time-lapse videos. One of the characteristics of traditional time-lapse imagery is stylized jerkiness, where short-term changes in the scene appear as small and annoying jitters in the video, often obfuscating the underlying temporal events of interest. We apply motion denoising for resynthesizing time-lapse videos showing the long-term evolution of a scene with jerky short-term changes removed. We show that existing filtering approaches are often incapable of achieving this task, and present a novel computational approach to denoise motion without explicit motion analysis. We demonstrate promising experimental results on a set of challenging time-lapse sequences.en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004)en_US
dc.description.sponsorshipShell Researchen_US
dc.description.sponsorshipUnited States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-06-1-0734)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (0964004)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/CVPR.2011.5995374en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleMotion denoising with application to time-lapse photographyen_US
dc.typeArticleen_US
dc.identifier.citationRubinstein, Michael, Ce Liu, Peter Sand, Fredo Durand, and William T. Freeman. “Motion Denoising with Application to Time-Lapse Photography.” CVPR 2011 (n.d.).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorRubinstein, Michaelen_US
dc.contributor.mitauthorSand, Peteren_US
dc.contributor.mitauthorDurand, Fredoen_US
dc.contributor.mitauthorFreeman, William T.en_US
dc.relation.journalProceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognitionen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsRubinstein, Michael; Liu, Ce; Sand, Peter; Durand, Fredo; Freeman, William T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-3707-3807
dc.identifier.orcidhttps://orcid.org/0000-0001-9919-069X
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record