dc.contributor.author | Rubinstein, Michael | |
dc.contributor.author | Liu, Ce | |
dc.contributor.author | Sand, Peter | |
dc.contributor.author | Durand, Fredo | |
dc.contributor.author | Freeman, William T. | |
dc.date.accessioned | 2014-04-17T19:58:23Z | |
dc.date.available | 2014-04-17T19:58:23Z | |
dc.date.issued | 2011-06 | |
dc.identifier.isbn | 978-1-4577-0394-2 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/86212 | |
dc.description.abstract | Motions can occur over both short and long time scales. We introduce motion denoising, which treats short-term changes as noise, long-term changes as signal, and re-renders a video to reveal the underlying long-term events. We demonstrate motion denoising for time-lapse videos. One of the characteristics of traditional time-lapse imagery is stylized jerkiness, where short-term changes in the scene appear as small and annoying jitters in the video, often obfuscating the underlying temporal events of interest. We apply motion denoising for resynthesizing time-lapse videos showing the long-term evolution of a scene with jerky short-term changes removed. We show that existing filtering approaches are often incapable of achieving this task, and present a novel computational approach to denoise motion without explicit motion analysis. We demonstrate promising experimental results on a set of challenging time-lapse sequences. | en_US |
dc.description.sponsorship | United States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004) | en_US |
dc.description.sponsorship | Shell Research | en_US |
dc.description.sponsorship | United States. Office of Naval Research. Multidisciplinary University Research Initiative (Grant N00014-06-1-0734) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (0964004) | en_US |
dc.language.iso | en_US | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/CVPR.2011.5995374 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Motion denoising with application to time-lapse photography | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Rubinstein, Michael, Ce Liu, Peter Sand, Fredo Durand, and William T. Freeman. “Motion Denoising with Application to Time-Lapse Photography.” CVPR 2011 (n.d.). | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.mitauthor | Rubinstein, Michael | en_US |
dc.contributor.mitauthor | Sand, Peter | en_US |
dc.contributor.mitauthor | Durand, Fredo | en_US |
dc.contributor.mitauthor | Freeman, William T. | en_US |
dc.relation.journal | Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.orderedauthors | Rubinstein, Michael; Liu, Ce; Sand, Peter; Durand, Fredo; Freeman, William T. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-3707-3807 | |
dc.identifier.orcid | https://orcid.org/0000-0001-9919-069X | |
dc.identifier.orcid | https://orcid.org/0000-0002-2231-7995 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |