dc.contributor.author | Abel, Zachary Ryan | |
dc.contributor.author | Demaine, Erik D. | |
dc.contributor.author | Demaine, Martin L. | |
dc.contributor.author | Eisenstat, Sarah Charmian | |
dc.contributor.author | Lynch, Jayson R. | |
dc.contributor.author | Schardl, Tao Benjamin | |
dc.date.accessioned | 2014-04-23T20:49:10Z | |
dc.date.available | 2014-04-23T20:49:10Z | |
dc.date.issued | 2013-07 | |
dc.date.submitted | 2012-08 | |
dc.identifier.issn | 1882-6652 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/86227 | |
dc.description.abstract | We prove the NP-completeness of finding a Hamiltonian path in an N × N × N cube graph with turns exactly at specified lengths along the path. This result establishes NP-completeness of Snake Cube puzzles: folding a chain of N3 unit cubes, joined at face centers (usually by a cord passing through all the cubes), into an N × N × N cube. Along the way, we prove a universality result that zig-zag chains (which must turn every unit) can fold into any polycube after 4 × 4 × 4 refinement, or into any Hamiltonian polycube after 2 × 2 × 2 refinement. | en_US |
dc.language.iso | en_US | |
dc.publisher | Information Processing Society of Japan | en_US |
dc.relation.isversionof | http://dx.doi.org/10.2197/ipsjjip.21.368 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Finding a Hamiltonian Path in a Cube with Specified Turns is Hard | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Abel, Zachary, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, and Tao B. Schardl. “Finding a Hamiltonian Path in a Cube with Specified Turns Is Hard.” Journal of Information Processing 21, no. 3 (2013): 368–377. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.contributor.mitauthor | Abel, Zachary Ryan | en_US |
dc.contributor.mitauthor | Demaine, Erik D. | en_US |
dc.contributor.mitauthor | Demaine, Martin L. | en_US |
dc.contributor.mitauthor | Eisenstat, Sarah Charmian | en_US |
dc.contributor.mitauthor | Lynch, Jayson R. | en_US |
dc.contributor.mitauthor | Schardl, Tao Benjamin | en_US |
dc.relation.journal | Journal of Information Processing | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Abel, Zachary; Demaine, Erik D.; Demaine, Martin L.; Eisenstat, Sarah; Lynch, Jayson; Schardl, Tao B. | en_US |
dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
dc.identifier.orcid | https://orcid.org/0000-0002-4295-1117 | |
dc.identifier.orcid | https://orcid.org/0000-0002-3182-1675 | |
dc.identifier.orcid | https://orcid.org/0000-0003-0198-3283 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |