Show simple item record

dc.contributor.authorLevin, Anat
dc.contributor.authorHasinoff, Samuel W.
dc.contributor.authorGreen, Paul
dc.contributor.authorDurand, Fredo
dc.contributor.authorFreeman, William T.
dc.date.accessioned2014-04-30T20:39:43Z
dc.date.available2014-04-30T20:39:43Z
dc.date.issued2009-07
dc.identifier.issn07300301
dc.identifier.urihttp://hdl.handle.net/1721.1/86307
dc.description.abstractDepth of field (DOF), the range of scene depths that appear sharp in a photograph, poses a fundamental tradeoff in photography---wide apertures are important to reduce imaging noise, but they also increase defocus blur. Recent advances in computational imaging modify the acquisition process to extend the DOF through deconvolution. Because deconvolution quality is a tight function of the frequency power spectrum of the defocus kernel, designs with high spectra are desirable. In this paper we study how to design effective extended-DOF systems, and show an upper bound on the maximal power spectrum that can be achieved. We analyze defocus kernels in the 4D light field space and show that in the frequency domain, only a low-dimensional 3D manifold contributes to focus. Thus, to maximize the defocus spectrum, imaging systems should concentrate their limited energy on this manifold. We review several computational imaging systems and show either that they spend energy outside the focal manifold or do not achieve a high spectrum over the DOF. Guided by this analysis we introduce the lattice-focal lens, which concentrates energy at the low-dimensional focal manifold and achieves a higher power spectrum than previous designs. We have built a prototype lattice-focal lens and present extended depth of field results.en_US
dc.description.sponsorshipAlfred P. Sloan Foundation (Fellowship)en_US
dc.description.sponsorshipMicrosoft Research (Fellowship)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF CAREER award 0447561)en_US
dc.description.sponsorshipUnited States. Multidisciplinary University Research Initiative (MURI Grant N00014-06-1-0734)en_US
dc.description.sponsorshipUnited States. National Geospatial-Intelligence Agency (NGA NEGI-1582-04-0004)en_US
dc.description.sponsorshipRoyal Dutch-Shell Groupen_US
dc.description.sponsorshipIsrael Science Foundationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/1531326.1531403en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.title4D frequency analysis of computational cameras for depth of field extensionen_US
dc.typeArticleen_US
dc.identifier.citationLevin, Anat, Samuel W. Hasinoff, Paul Green, Frédo Durand, and William T. Freeman. “4D Frequency Analysis of Computational Cameras for Depth of Field Extension.” ACM Transactions on Graphics 28, no. 3 (July 27, 2009): 1.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorLevin, Anaten_US
dc.contributor.mitauthorHasinoff, Samuel W.en_US
dc.contributor.mitauthorGreen, Paulen_US
dc.contributor.mitauthorDurand, Fredoen_US
dc.contributor.mitauthorFreeman, William T.en_US
dc.relation.journalACM Transactions on Graphicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsLevin, Anat; Hasinoff, Samuel W.; Green, Paul; Durand, Frédo; Freeman, William T.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9919-069X
dc.identifier.orcidhttps://orcid.org/0000-0002-2231-7995
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record