MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Point Process Model for Auditory Neurons Considering Both Their Intrinsic Dynamics and the Spectrotemporal Properties of an Extrinsic Signal

Author(s)
Plourde, Eric; Delgutte, Bertrand; Brown, Emery N.
Thumbnail
DownloadBrown_A point process.pdf (428.8Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We propose a point process model of spiking activity from auditory neurons. The model takes account of the neuron's intrinsic dynamics as well as the spectrotemporal properties of an input stimulus. A discrete Volterra expansion is used to derive the form of the conditional intensity function. The Volterra expansion models the neuron's baseline spike rate, its intrinsic dynamics-spiking history-and the stimulus effect which in this case is the analog of the spectrotemporal receptive field (STRF). We performed the model fitting efficiently in a generalized linear model framework using ridge regression to address properly this ill-posed maximum likelihood estimation problem. The model provides an excellent fit to spiking activity from 55 auditory nerve neurons. The STRF-like representation estimated jointly with the neuron's intrinsic dynamics may offer more accurate characterizations of neural activity in the auditory system than current ones based solely on the STRF.
Date issued
2011-02
URI
http://hdl.handle.net/1721.1/86313
Department
Harvard University--MIT Division of Health Sciences and Technology; Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
IEEE Transactions on Biomedical Engineering
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Plourde, Eric, Bertrand Delgutte, and Emery N Brown. “A Point Process Model for Auditory Neurons Considering Both Their Intrinsic Dynamics and the Spectrotemporal Properties of an Extrinsic Signal.” IEEE Trans. Biomed. Eng. 58, no. 6 (n.d.): 1507–1510.
Version: Author's final manuscript
ISSN
0018-9294
1558-2531

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.