Show simple item record

dc.contributor.authorPurdon, Patrick Lee
dc.contributor.authorBrown, Emery N.
dc.contributor.authorWong, Kin Foon Kevin
dc.contributor.authorSmith, Anne C.
dc.contributor.authorPierce, Eric T.
dc.contributor.authorHarrell, P. Grace
dc.contributor.authorWalsh, John L.
dc.contributor.authorSalazar, Andres Felipe
dc.contributor.authorTavares, Casie L.
dc.contributor.authorCimenser, Aylin
dc.contributor.authorPrerau, Michael J.
dc.contributor.authorMukamel, Eran A.
dc.contributor.authorSampson, Aaron
dc.date.accessioned2014-05-01T14:31:04Z
dc.date.available2014-05-01T14:31:04Z
dc.date.issued2011-08
dc.date.submitted2011-06
dc.identifier.isbn978-1-4577-1589-1
dc.identifier.isbn978-1-4244-4121-1
dc.identifier.isbn978-1-4244-4122-8
dc.identifier.urihttp://hdl.handle.net/1721.1/86320
dc.description.abstractAccurate quantification of loss of response to external stimuli is essential for understanding the mechanisms of loss of consciousness under general anesthesia. We present a new approach for quantifying three possible outcomes that are encountered in behavioral experiments during general anesthesia: correct responses, incorrect responses and no response. We use a state-space model with two state variables representing a probability of response and a conditional probability of correct response. We show applications of this approach to an example of responses to auditory stimuli at varying levels of propofol anesthesia ranging from light sedation to deep anesthesia in human subjects. The posterior probability densities of model parameters and the response probability are computed within a Bayesian framework using Markov Chain Monte Carlo methods.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP2-OD006454)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant K25-NS057580)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-EB006385)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-MH071847)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IEMBS.2011.6091165en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleBayesian analysis of trinomial data in behavioral experiments and its application to human studies of general anesthesiaen_US
dc.typeArticleen_US
dc.identifier.citationWong, K. F. K., A. C. Smith, E. T. Pierce, P. G. Harrell, J. L. Walsh, A. F. Salazar, C. L. Tavares, et al. “Bayesian Analysis of Trinomial Data in Behavioral Experiments and Its Application to Human Studies of General Anesthesia.” 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (n.d.).en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorPurdon, Patrick Leeen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.relation.journalProceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWong, K. F. K.; Smith, A. C.; Pierce, E. T.; Harrell, P. G.; Walsh, J. L.; Salazar, A. F.; Tavares, C. L.; Cimenser, A.; Prerau, M. J.; Mukamel, E. A.; Sampson, A.; Purdon, P. L.; Brown, E. N.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record