Show simple item record

dc.contributor.authorBrown, Emery N.
dc.contributor.authorPurdon, Patrick Lee
dc.contributor.authorWong, Kin Foon Kevin
dc.contributor.authorMukamel, Eran A.
dc.contributor.authorSalazar, Andres Felipe
dc.contributor.authorPierce, Eric T.
dc.contributor.authorHarrell, P. Grace
dc.contributor.authorWalsh, John L.
dc.contributor.authorSampson, Aaron
dc.date.accessioned2014-05-01T15:46:10Z
dc.date.available2014-05-01T15:46:10Z
dc.date.issued2011-08
dc.date.submitted2011-06
dc.identifier.isbn978-1-4577-1589-1
dc.identifier.isbn978-1-4244-4121-1
dc.identifier.isbn978-1-4244-4122-8
dc.identifier.urihttp://hdl.handle.net/1721.1/86326
dc.description.abstractCoherence analysis characterizes frequency-dependent covariance between signals, and is useful for multivariate oscillatory data often encountered in neuroscience. The global coherence provides a summary of coherent behavior in high-dimensional multivariate data by quantifying the concentration of variance in the first mode of an eigenvalue decomposition of the cross-spectral matrix. Practical application of this useful method is sensitive to noise, and can confound coherent activity in disparate neural populations or spatial locations that have a similar frequency structure. In this paper we describe two methodological enhancements to the global coherence procedure that increase robustness of the technique to noise, and that allow characterization of how power within specific coherent modes change through time.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP2-OD006454)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant K25-NS057580)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant DP1-OD003646)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-EB006385)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01-MH071847)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IEMBS.2011.6091170en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleRobust time-varying multivariate coherence estimation: Application to electroencephalogram recordings during general anesthesiaen_US
dc.typeArticleen_US
dc.identifier.citationWong, K. F. K., E. A. Mukamel, A. F. Salazar, E. T. Pierce, P. G. Harrell, J. L. Walsh, A. Sampson, E. N. Brown, and P. L. Purdon. “Robust Time-Varying Multivariate Coherence Estimation: Application to Electroencephalogram Recordings During General Anesthesia.” 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (n.d.).en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.mitauthorBrown, Emery N.en_US
dc.contributor.mitauthorPurdon, Patrick Leeen_US
dc.relation.journalProceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Societyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsWong, K. F. K.; Mukamel, E. A.; Salazar, A. F.; Pierce, E. T.; Harrell, P. G.; Walsh, J. L.; Sampson, A.; Brown, E. N.; Purdon, P. L.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5651-5060
dc.identifier.orcidhttps://orcid.org/0000-0003-2668-7819
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record