Show simple item record

dc.contributor.authorKim, Wonjung
dc.contributor.authorBush, John W. M.
dc.contributor.authorJensen, Kaare H.
dc.contributor.authorHolbrook, N. Michele
dc.date.accessioned2014-05-01T18:27:35Z
dc.date.available2014-05-01T18:27:35Z
dc.date.issued2013-04
dc.date.submitted2013-02
dc.identifier.issn1742-5689
dc.identifier.issn1742-5662
dc.identifier.urihttp://hdl.handle.net/1721.1/86340
dc.description.abstractMany biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of material. While the most concentrated solutions offer the greatest potential in terms of material transfer, impedance typically increases with concentration, thus making them the most difficult to transport. We develop a general framework for describing systems for which impedance increases with concentration, and consider material flow in four different natural systems: blood flow in vertebrates, sugar transport in vascular plants and two modes of nectar drinking in birds and insects. The model provides a simple method for determining the optimum concentration c[subscript opt] in these systems. The model further suggests that the impedance at the optimum concentration μ[subscript opt] may be expressed in terms of the impedance of the pure (c = 0) carrier medium μ[subscript 0] as μ[subscript opt]∼2[superscript α]μ[subscript 0], where the power α is prescribed by the specific flow constraints, for example constant pressure for blood flow (α = 1) or constant work rate for certain nectar-drinking insects (α = 6). Comparing the model predictions with experimental data from more than 100 animal and plant species, we find that the simple model rationalizes the observed concentrations and impedances. The model provides a universal framework for studying flows impeded by concentration, and yields insight into optimization in engineered systems, such as traffic flow.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant 1021779)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Grant DMS-0907955)en_US
dc.description.sponsorshipNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-0820484)en_US
dc.language.isoen_US
dc.publisherRoyal Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1098/rsif.2013.0138en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceProf. Bush via Michael Nogaen_US
dc.titleOptimal concentrations in transport systemsen_US
dc.typeArticleen_US
dc.identifier.citationJensen, K. H., W. Kim, N. M. Holbrook, and J. W. M. Bush. “Optimal Concentrations in Transport Systems.” Journal of The Royal Society Interface 10, no. 83 (April 17, 2013): 20130138–20130138.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverBush, Johnen_US
dc.contributor.mitauthorKim, Wonjungen_US
dc.contributor.mitauthorBush, John W. M.en_US
dc.relation.journalJournal of The Royal Society Interfaceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsJensen, K. H.; Kim, W.; Holbrook, N. M.; Bush, J. W. M.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7936-7256
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record