Show simple item record

dc.contributor.authorClemens, E. F.
dc.contributor.authorGegg, S. G.
dc.contributor.authorTurner, E. R.
dc.contributor.authorHuang, Arthur C.
dc.contributor.authorGreitzer, Edward M.
dc.contributor.authorTan, Choon S.
dc.date.accessioned2014-05-02T15:53:18Z
dc.date.available2014-05-02T15:53:18Z
dc.date.issued2012-06
dc.identifier.isbn978-0-7918-4474-8
dc.identifier.urihttp://hdl.handle.net/1721.1/86369
dc.description.abstractumerical simulations have been carried out to define the loss generation mechanisms associated with tip leakage in un-shrouded axial turbines. Tip clearance vortex dynamics are a dominant feature of two mechanisms important in determining this loss: (i) decreased swirl velocity due to vortex line contraction in regions of decreasing axial velocity, i.e., adverse pressure gradient and (ii) vortex breakdown and reverse flow in the vortex core. The mixing losses behave differently from the conventional view of flow exiting a turbine tip clearance. More specifically, it is shown, through both control volume arguments and computations, that as a swirling leakage flow passes through a pressure rise, such as in the aft portion of the suction side of a turbine blade, the mixed-out loss can either decrease or increase. For turbines the latter typically occurs if the deceleration is large enough to initiate vortex breakdown, and it is demonstrated that this is the case in modern turbines. The effect of blade pressure distribution on clearance losses is illustrated through computational examination of two turbine blades, one with forward loading at the tip and one with aft loading. A 15% difference in leakage loss is found between the two, due to lower clearance vortex deceleration (lower core static pressure rise) with forward loading, and hence lower vortex breakdown loss. Additional computational experiments, carried out to define the effects of blade loading, incidence, and solidity, are found to be consistent with the proposed ideas linking blade pressure distribution, vortex breakdown and turbine tip leakage loss.en_US
dc.language.isoen_US
dc.publisherASME Internationalen_US
dc.relation.isversionofhttp://dx.doi.org/10.1115/GT2012-68302en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Greitzer via Barbara Williamsen_US
dc.titleBlade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Lossen_US
dc.typeArticleen_US
dc.identifier.citationHuang, A. C., E. M. Greitzer, C. S. Tan, E. F. Clemens, S. G. Gegg, and E. R. Turner. “Blade Loading Effects on Axial Turbine Tip Leakage Vortex Dynamics and Loss.” Volume 8: Turbomachinery, Parts A, B, and C (June 11, 2012).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.approverGreitzer, Edward M.en_US
dc.contributor.mitauthorHuang, Arthur C.en_US
dc.contributor.mitauthorGreitzer, Edward M.en_US
dc.contributor.mitauthorTan, Choon S.en_US
dc.relation.journalVolume 8: Turbomachinery, Parts A, B, and Cen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHuang, A. C.; Greitzer, E. M.; Tan, C. S.; Clemens, E. F.; Gegg, S. G.; Turner, E. R.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-9625-1020
dc.identifier.orcidhttps://orcid.org/0000-0002-8805-5289
dc.identifier.orcidhttps://orcid.org/0000-0002-8808-6632
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record