MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model of a truncated fast rotating flow at infinite Reynolds number

Author(s)
Bourouiba, Lydia
Thumbnail
DownloadBourouiba_Model of a.pdf (2.830Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
The purpose of this study is to examine the strongly rotating limit of a turbulent flowtheoretically and numerically. The goal is to verify the predictions of asymptotic theories. Given the limitations of experimental and dissipative numerical approaches to this problem, we use classical equilibrium statistical mechanics. We apply the statistical mechanics approach to the inviscid truncated model of strongly rotating turbulence (in the small Rossby number range) and derive the theoretical spectra of the decoupled model. We use numerical simulations to complement these derivations and examine the relaxation to equilibrium of the inviscid unforced truncated rotating turbulent system for different sets of initial conditions. We separate our discussion into two time domains: the discussion of the decoupled phase with time below a threshold time t[subscript ⋆], for which a new set of invariants S are identified, and the coupled phase with a time beyond t[subscript ⋆], for which the quantities S are no longer invariants. We obtain a numerical evaluation of t[subscript ⋆] which is coherent with the theoretical asymptotic expansions. We examine if the quantities S play a constraining role on the coupled dynamics beyond t > t[subscript ⋆]. We find that the theoretical statistical predictions in the decoupled phase capture the horizontal dynamics of the flow. In the coupled phase, the invariants S are found to still play a constraining role on the short-timescale horizontal dynamics of the flow. These results are discussed in the larger context of previous rotating turbulence studies.
Date issued
2008-07
URI
http://hdl.handle.net/1721.1/86391
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Physics of Fluids
Publisher
American Institute of Physics (AIP)
Citation
Bourouiba, L. “Model of a Truncated Fast Rotating Flow at Infinite Reynolds Number.” Physics of Fluids 20, no. 7 (2008): 075112. © 2008 American Institute of Physics
Version: Final published version
ISSN
10706631
1089-7666

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.