Show simple item record

dc.contributor.authorJayaraman, Vijaysekhar
dc.contributor.authorPotsaid, B.
dc.contributor.authorJiang, J.
dc.contributor.authorCole, G. D.
dc.contributor.authorRobertson, M. E.
dc.contributor.authorBurgner, C. B.
dc.contributor.authorJohn, D. D.
dc.contributor.authorChoi, W.
dc.contributor.authorLiu, J.
dc.contributor.authorStein, B. A.
dc.contributor.authorSanders, S. T.
dc.contributor.authorCable, Alex E.
dc.contributor.authorGrulkowski, Ireneusz
dc.contributor.authorTsai, Tsung-Han
dc.contributor.authorFujimoto, James G.
dc.date.accessioned2014-05-05T16:55:28Z
dc.date.available2014-05-05T16:55:28Z
dc.date.issued2013-05
dc.identifier.issn0277-786X
dc.identifier.issn0277-7813
dc.identifier.urihttp://hdl.handle.net/1721.1/86409
dc.description.abstractIn the last 2 years, the field of micro-electro-mechanical systems tunable vertical cavity surface-emitting lasers (MEMS-VCSELs) has seen dramatic improvements in laser tuning range and tuning speed, along with expansion into unexplored wavelength bands, enabling new applications. This paper describes the design and performance of high-speed ultra-broad tuning range 1050nm and 1310nm MEMS-VCSELs for medical imaging and spectroscopy. Key results include achievement of the first MEMS-VCSELs at 1050nm and 1310nm, with 100nm tuning demonstrated at 1050nm and 150nm tuning at shown at 1310nm. The latter result represents the widest tuning range of any MEMS-VCSEL at any wavelength. Wide tuning range has been achieved in conjunction with high-speed wavelength scanning at rates beyond 1 MHz. These advances, coupled with recent demonstrations of very long MEMS-VCSEL dynamic coherence length, have enabled advancements in both swept source optical coherence tomography (SS-OCT) and gas spectroscopy. VCSEL-based SS-OCT at 1050nm has enabled human eye imaging from the anterior eye through retinal and choroid layers using a single instrument for the first time. VCSEL-based SS-OCT at 1310nm has enabled real-time 3-D SS-OCT imaging of large tissue volumes in endoscopic settings. The long coherence length of the VCSEL has also enabled, for the first time, meter-scale SS-OCT applicable to industrial metrology. With respect to gas spectroscopy, narrow dynamic line-width has allowed accurate high-speed measurement of multiple water vapor and HF absorption lines in the 1310nm wavelength range, useful in gas thermometry of dynamic combustion engines.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-EY011289-26)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-EY013178-12)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-EY013516-09)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-EY019029-03)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-CA075289-15)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R01-NS057476-05)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1R44EY022864-01)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R44-CA101067)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA9550-10-1-0551)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (FA9550-10-1-0063)en_US
dc.description.sponsorshipThorlabs, Inc.en_US
dc.language.isoen_US
dc.publisherSPIEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1117/12.2018345en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSPIEen_US
dc.titleHigh-speed ultra-broad tuning MEMS-VCSELs for imaging and spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationJayaraman, V., B. Potsaid, J. Jiang, G. D. Cole, M. E. Robertson, C. B. Burgner, D. D. John, et al. “High-Speed Ultra-Broad Tuning MEMS-VCSELs for Imaging and Spectroscopy.” Edited by Ulrich Schmid, José Luis Sánchez de Rojas Aldavero, and Monika Leester-Schaedel. Smart Sensors, Actuators, and MEMS VI (May 17, 2013). © 2013 SPIEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGrulkowski, Ireneuszen_US
dc.contributor.mitauthorChoi, W.en_US
dc.contributor.mitauthorTsai, Tsung-Hanen_US
dc.contributor.mitauthorLiu, J.en_US
dc.contributor.mitauthorFujimoto, James G.en_US
dc.relation.journalProceedings of SPIE--the International Society for Optical Engineeringen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsJayaraman, V.; Potsaid, B.; Jiang, J.; Cole, G. D.; Robertson, M. E.; Burgner, C. B.; John, D. D.; Grulkowski, I.; Choi, W.; Tsai, T. H.; Liu, J.; Stein, B. A.; Sanders, S. T.; Fujimoto, J. G.; Cable, A. E.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0828-4357
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record