MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe[subscript 1– y]Se[subscript y]

Author(s)
Zhang, Qian; Cao, Feng; Liu, Weishu; Lukas, Kevin; Yu, Bo; Chen, Shuo; Opeil, Cyril; Broido, David; Chen, Gang; Ren, Zhifeng; ... Show more Show less
Thumbnail
DownloadPaper4_Q.Zhang_JACS.pdf (1.368Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Alternative title
Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe1–ySey
Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present detailed studies of potassium doping in PbTe[subscript 1– y]Se[subscript y] (y = 0, 0.15, 0.25, 0.75, 0.85, 0.95, and 1). It was found that Se increases the doping concentration of K in PbTe as a result of the balance of electronegativity and also lowers the lattice thermal conductivity because of the increased number of point defects. Tuning the composition and carrier concentration to increase the density of states around the Fermi level results in higher Seebeck coefficients for the two valence bands of PbTe[subscript 1– y]Se[subscript y]. Peak thermoelectric figure of merit (ZT) values of 1.6 and 1.7 were obtained for Te-rich K[subscript 0.02]Pb[subscript 0.98]Te[subscript 0.75]Se[subscript 0.25] at 773 K and Se-rich K[subscript 0.02]Pb[subscript 0.98]Te[subscript 0.15]Se[subscript 0.85] at 873 K, respectively. However, the average ZT was higher in Te-rich compositions than in Se-rich compositions, with the best found in K[subscript 0.02]Pb[subscript 0.98]Te[subscript 0.75]Se[subscript 0.25]. Such a result is due to the improved electron transport afforded by heavy K doping with the assistance of Se.
Date issued
2012-06
URI
http://hdl.handle.net/1721.1/86875
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of the American Chemical Society
Publisher
American Chemical Society
Citation
Zhang, Qian, Feng Cao, Weishu Liu, Kevin Lukas, Bo Yu, Shuo Chen, Cyril Opeil, David Broido, Gang Chen, and Zhifeng Ren. “ Heavy Doping and Band Engineering by Potassium to Improve the Thermoelectric Figure of Merit in p-Type PbTe, PbSe, and PbTe[subscript 1– y]Se[subscript y].” Journal of the American Chemical Society 134, no. 24 (June 20, 2012): 10031–10038.
Version: Author's final manuscript
ISSN
0002-7863
1520-5126

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.