MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data compression techniques for urban traffic data

Author(s)
Asif, Muhammad Tayyab; Kannan, Srinivasan; Dauwels, Justin H. G.; Jaillet, Patrick
Thumbnail
DownloadJaillet_Data compression.pdf (958.6Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
With the development of inexpensive sensors such as GPS probes, Data Driven Intelligent Transport Systems (D[superscript 2]ITS) can acquire traffic data with high spatial and temporal resolution. The large amount of collected information can help improve the performance of ITS applications like traffic management and prediction. The huge volume of data, however, puts serious strain on the resources of these systems. Traffic networks exhibit strong spatial and temporal relationships. We propose to exploit these relationships to find low-dimensional representations of large urban networks for data compression. In this paper, we study different techniques for compressing traffic data, obtained from large urban road networks. We use Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA) for 2-way network representation and Tensor Decomposition for 3-way network representation. We apply these techniques to find low-dimensional structures of large networks, and use these low-dimensional structures for data compression.
Date issued
2013-04
URI
http://hdl.handle.net/1721.1/86889
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Laboratory for Information and Decision Systems
Journal
Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Asif, Muhammad Tayyab, Srinivasan Kannan, Justin Dauwels, and Patrick Jaillet. “Data Compression Techniques for Urban Traffic Data.” 2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS) (n.d.).
Version: Author's final manuscript
ISBN
978-1-4673-5913-9

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.