Improving automatic speech recognition through head pose driven visual grounding
Author(s)
Vosoughi, Soroush
DownloadMain Article (813.4Kb)
PUBLISHER_POLICY
Publisher Policy
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Terms of use
Metadata
Show full item recordAbstract
In this paper, we present a multimodal speech recognition system for real world scene description tasks. Given a visual scene, the system dynamically biases its language model based on the content of the visual scene and visual attention of the speaker. Visual attention is used to focus on likely objects within the scene. Given a spoken description the system then uses the visually biased language model to process the speech. The system uses head pose as a proxy for the visual attention of the speaker. Readily available standard computer vision algorithms are used to recognize the objects in the scene and automatic real time head pose estimation is done using depth data captured via a Microsoft Kinect. The system was evaluated on multiple participants. Overall, incorporating visual information into the speech recognizer greatly improved speech recognition accuracy. The rapidly decreasing cost of 3D sensing technologies such as the Kinect allows systems with similar underlying principles to be used for many speech recognition tasks where there is visual information.
Date issued
2014Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)Journal
Proceedings of the 32nd annual ACM conference on Human factors in computing systems - CHI '14
Publisher
Association for Computing Machinery
Citation
Vosoughi, Soroush. “Improving Automatic Speech Recognition through Head Pose Driven Visual Grounding.” Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI ’14 (2014), April 26–May 01, 2014, Toronto, ON, Canada.
Version: Final published version
ISBN
9781450324731