Show simple item record

dc.contributor.authorGrant, Elyot
dc.contributor.authorIndyk, Piotr
dc.date.accessioned2014-05-15T16:47:03Z
dc.date.available2014-05-15T16:47:03Z
dc.date.issued2013-06
dc.identifier.isbn9781450320313
dc.identifier.urihttp://hdl.handle.net/1721.1/86998
dc.description.abstractCompressive sensing is a method for acquiring high dimensional signals (e.g., images) using a small number of linear measurements. Consider an n-pixel image x ∈ R[superscript n], where each pixel p has value x[subscript p]. The image is acquired by computing the measurement vector Ax, where A is an m x n measurement matrix, for some m << n. The goal is to design the matrix A and the recovery algorithm which, given Ax, returns an approximation to x. It is known that m=O(k log(n/k)) measurements suffices to recover the k-sparse approximation of x. Unfortunately, this result uses matrices A that are random. Such matrices are difficult to implement in physical devices. In this paper we propose compressive sensing schemes that use matrices A that achieve the near-optimal bound of m=O(k log n), while being highly "local". We also show impossibility results for stronger notions of locality.en_US
dc.description.sponsorshipCharles Stark Draper Laboratoryen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (Award NSF CCF-1012042)en_US
dc.description.sponsorshipDavid & Lucile Packard Foundationen_US
dc.language.isoen_US
dc.publisherAssociation for Computing Machinery (ACM)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1145/2462356.2462405en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleCompressive sensing using locality-preserving matricesen_US
dc.typeArticleen_US
dc.identifier.citationElyot Grant and Piotr Indyk. 2013. Compressive sensing using locality-preserving matrices. In Proceedings of the twenty-ninth annual symposium on Computational geometry (SoCG '13). ACM, New York, NY, USA, 215-222.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorGrant, Elyoten_US
dc.contributor.mitauthorIndyk, Piotren_US
dc.relation.journalProceedings of the 29th annual symposium on Symposuim on computational geometry (SoCG '13)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsGrant, Elyot; Indyk, Piotren_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7983-9524
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record