Show simple item record

dc.contributor.authorHar-Peled, Sariel
dc.contributor.authorIndyk, Piotr
dc.contributor.authorSidiropoulos, Anastasios
dc.date.accessioned2014-05-15T17:22:50Z
dc.date.available2014-05-15T17:22:50Z
dc.date.issued2013
dc.identifier.isbn978-1-61197-251-1
dc.identifier.isbn978-1-61197-310-5
dc.identifier.urihttp://hdl.handle.net/1721.1/87001
dc.description.abstractA classical result in metric geometry asserts that any n-point metric admits a linear-size spanner of dilation O(log n) [PS89]. More generally, for any c > 1, any metric space admits a spanner of size O(n[superscript 1+1/c]), and dilation at most c. This bound is tight assuming the well-known girth conjecture of Erdős [Erd63]. We show that for a metric induced by a set of n points in high-dimensional Euclidean space, it is possible to obtain improved dilation/size trade-offs. More specifically, we show that any n-point Euclidean metric admits a near-linear size spanner of dilation O(√log n). Using the LSH scheme of Andoni and Indyk [AI06] we further show that for any c > 1, there exist spanners of size roughly O(n[superscript1+1/c[superscript 2]]) and dilation O(c). Finally, we also exhibit super-linear lower bounds on the size of spanners with constant dilation.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AF Award CCF-0915984)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (AF Award CCF-1217462)en_US
dc.language.isoen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1137/1.9781611973105.57en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSIAMen_US
dc.titleEuclidean Spanners in High Dimensionsen_US
dc.typeArticleen_US
dc.identifier.citationHar-Peled, Sariel, Piotr Indyk, and Anastasios Sidiropoulos. "Euclidean Spanners in High Dimensions." Khanna, Sanjeev, ed. Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorIndyk, Piotren_US
dc.relation.journalProceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithmsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHar-Peled, Sariel; Indyk, Piotr; Sidiropoulos, Anastasiosen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-7983-9524
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record