Show simple item record

dc.contributor.authorKellis, Manolis
dc.contributor.authorWard, Lucas D.
dc.date.accessioned2014-05-15T17:39:33Z
dc.date.available2014-05-15T17:39:33Z
dc.date.issued2012-11
dc.date.submitted2012-09
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttp://hdl.handle.net/1721.1/87003
dc.description.abstractAssociation studies provide genome-wide information about the genetic basis of complex disease, but medical research has focused primarily on protein-coding variants, owing to the difficulty of interpreting noncoding mutations. This picture has changed with advances in the systematic annotation of functional noncoding elements. Evolutionary conservation, functional genomics, chromatin state, sequence motifs and molecular quantitative trait loci all provide complementary information about the function of noncoding sequences. These functional maps can help with prioritizing variants on risk haplotypes, filtering mutations encountered in the clinic and performing systems-level analyses to reveal processes underlying disease associations. Advances in predictive modeling can enable data-set integration to reveal pathways shared across loci and alleles, and richer regulatory models can guide the search for epistatic interactions. Lastly, new massively parallel reporter experiments can systematically validate regulatory predictions. Ultimately, advances in regulatory and systems genomics can help unleash the value of whole-genome sequencing for personalized genomic risk assessment, diagnosis and treatment.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant R01HG004037)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant RC1HG005334)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (CAREER Grant 0644282)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nbt.2422en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleInterpreting noncoding genetic variation in complex traits and human diseaseen_US
dc.typeArticleen_US
dc.identifier.citationWard, Lucas D, and Manolis Kellis. “Interpreting Noncoding Genetic Variation in Complex Traits and Human Disease.” Nature Biotechnology 30, no. 11 (November 8, 2012): 1095–1106.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWard, Lucas D.en_US
dc.contributor.mitauthorKellis, Manolisen_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWard, Lucas D; Kellis, Manolisen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8017-809X
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record