Show simple item record

dc.contributor.authorHolladay, Anne E.
dc.contributor.authorBarry, Jennifer
dc.contributor.authorKaelbling, Leslie P.
dc.contributor.authorLozano-Perez, Tomas
dc.date.accessioned2014-05-15T20:39:33Z
dc.date.available2014-05-15T20:39:33Z
dc.date.issued2013-05
dc.identifier.isbn978-1-4673-5643-5
dc.identifier.isbn978-1-4673-5641-1
dc.identifier.urihttp://hdl.handle.net/1721.1/87018
dc.description.abstractWe present an approach to robust placing that uses movable surfaces in the environment to guide a poorly grasped object into a goal pose. This problem is an instance of the inverse motion planning problem, in which we solve for a configuration of the environment that makes desired trajectories likely. To calculate the probability that an object will take a particular trajectory, we model the physics of placing as a mixture model of simple object motions. Our algorithm searches over the possible configurations of the object and environment and uses this model to choose the configuration most likely to lead to a successful place. We show that this algorithm allows the PR2 robot to execute placements that fail with traditional placing implementations.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF under Grants No. 1117325)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant No. 1122374)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR MURI grant N00014-09-1-1051)en_US
dc.description.sponsorshipUnited States. Air Force Office of Scientific Research (AFOSR grant FA2386-10-1-4135)en_US
dc.description.sponsorshipMassachusetts Institute of Technology (Angle Research and Innovation Scholarship)en_US
dc.description.sponsorshipSingapore. Ministry of Education (grant to the Singapore-MIT International Design Center)en_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ICRA.2013.6631099en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleObject placement as inverse motion planningen_US
dc.typeArticleen_US
dc.identifier.citationHolladay, Anne, Jennifer Barry, Leslie Pack Kaelbling, and Tomas Lozano-Perez. “Object Placement as Inverse Motion Planning.” 2013 IEEE International Conference on Robotics and Automation Automation (ICRA) Karlsruhe, Germany, May 6-10, 2013. pp.3715-3721.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorHolladay, Anne E.en_US
dc.contributor.mitauthorBarry, Jenniferen_US
dc.contributor.mitauthorKaelbling, Leslie P.en_US
dc.contributor.mitauthorLozano-Perez, Tomasen_US
dc.relation.journal2013 IEEE International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsHolladay, Anne; Barry, Jennifer; Kaelbling, Leslie Pack; Lozano-Perez, Tomasen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8657-2450
dc.identifier.orcidhttps://orcid.org/0000-0001-6054-7145
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record