MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics

Author(s)
Perez, Alejandro; Platt, Robert; Konidaris, George; Lozano-Perez, Tomas; Kaelbling, Leslie P.
Thumbnail
DownloadKaelbling_LQR-RRT.pdf (1.211Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The RRT* algorithm has recently been proposed as an optimal extension to the standard RRT algorithm [1]. However, like RRT, RRT* is difficult to apply in problems with complicated or underactuated dynamics because it requires the design of a two domain-specific extension heuristics: a distance metric and node extension method. We propose automatically deriving these two heuristics for RRT* by locally linearizing the domain dynamics and applying linear quadratic regulation (LQR). The resulting algorithm, LQR-RRT*, finds optimal plans in domains with complex or underactuated dynamics without requiring domain-specific design choices. We demonstrate its application in domains that are successively torque-limited, underactuated, and in belief space.
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/87036
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 2012 IEEE International Conference on Robotics and Automation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Perez, Alejandro, Robert Platt, George Konidaris, Leslie Kaelbling, and Tomas Lozano-Perez. “LQR-RRT*: Optimal Sampling-Based Motion Planning with Automatically Derived Extension Heuristics.” 2012 IEEE International Conference on Robotics and Automation (n.d.).
Version: Author's final manuscript
ISBN
978-1-4673-1405-3
978-1-4673-1403-9
978-1-4673-1578-4
978-1-4673-1404-6

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.