MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Smallest Compact Formulation for the Permutahedron

Author(s)
Goemans, Michel X.
Thumbnail
Downloadpermutahedron-mp-rev.pdf (227.4Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
In this note, we consider the permutahedron, the convex hull of all permutations of {1,2…,n} . We show how to obtain an extended formulation for this polytope from any sorting network. By using the optimal Ajtai–Komlós–Szemerédi sorting network, this extended formulation has Θ(nlogn) variables and inequalities. Furthermore, from basic polyhedral arguments, we show that this is best possible (up to a multiplicative constant) since any extended formulation has at least Ω(nlogn) inequalities. The results easily extend to the generalized permutahedron.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/87079
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Mathematical Programming
Publisher
Springer-Verlag
Citation
Goemans, Michel X. “Smallest Compact Formulation for the Permutahedron.” Mathematical Programming (2014): n. pag.
Version: Author's final manuscript
ISSN
0025-5610
1436-4646

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.