Show simple item record

dc.contributor.authorJaillet, Patrick
dc.contributor.authorAsif, Muhammad Tayyab
dc.contributor.authorDauwels, Justin H. G.
dc.contributor.authorGoh, C. Y.
dc.contributor.authorOran, Ali
dc.contributor.authorFathi, E.
dc.contributor.authorXu, M.
dc.contributor.authorDhanya, M. M.
dc.contributor.authorMitrovic, Nikola
dc.date.accessioned2014-05-22T17:42:26Z
dc.date.available2014-05-22T17:42:26Z
dc.date.issued2012-09
dc.identifier.isbn978-1-4673-3062-6
dc.identifier.isbn978-1-4673-3064-0
dc.identifier.issn2153-0009
dc.identifier.urihttp://hdl.handle.net/1721.1/87100
dc.description.abstractMany intelligent transportation systems (ITS) applications require accurate prediction of traffic parameters. Previous studies have shown that data driven machine learning methods like support vector regression (SVR) can effectively and accurately perform this task. However, these studies focus on highways, or a few road segments. We propose a robust and scalable method using v-SVR to tackle the problem of speed prediction of a large heterogeneous road network. The traditional performance measures such as mean absolute percentage error (MAPE) and root mean square error (RMSE) provide little insight into spatial and temporal characteristics of prediction methods for a large network. This inadequacy can be a serious hurdle in effective implementation of prediction models for route guidance, congestion avoidance, dynamic traffic assignment and other ITS applications. We propose unsupervised learning techniques by employing k-means clustering, principal component analysis (PCA), and self organizing maps (SOM) to overcome this insufficiency. We establish the effectiveness of the developed methods by evaluation of spatial and temporal characteristics of prediction performance of the proposed variable window v-SVR method.en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology Centeren_US
dc.language.isoen_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ITSC.2012.6338917en_US
dc.titleUnsupervised learning based performance analysis of v-support vector regression for speed prediction of a large road networken_US
dc.typeArticleen_US
dc.identifier.citationAsif, M. T. et al. “Unsupervised Learning Based Performance Analysis of N-Support Vector Regression for Speed Prediction of a Large Road Network.” IEEE, 2012. 983–988.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Information and Decision Systemsen_US
dc.contributor.mitauthorJaillet, Patricken_US
dc.relation.journalProceedings of the 2012 15th International IEEE Conference on Intelligent Transportation Systemsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.orderedauthorsAsif, M. T.; Dauwels, J.; Goh, C. Y.; Oran, A.; Fathi, E.; Xu, M.; Dhanya, M. M.; Mitrovic, N.; Jaillet, P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-8585-6566
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record