Show simple item record

dc.contributor.authorErnst, Jason
dc.contributor.authorKellis, Manolis
dc.date.accessioned2014-05-22T18:17:13Z
dc.date.available2014-05-22T18:17:13Z
dc.date.issued2012-02
dc.identifier.issn1548-7091
dc.identifier.issn1548-7105
dc.identifier.urihttp://hdl.handle.net/1721.1/87104
dc.description.abstractTo the Editor: Chromatin-state annotation using combinations of chromatin modification patterns has emerged as a powerful approach for discovering regulatory regions and their cell type–specific activity patterns and for interpreting disease-association studies1, 2, 3, 4, 5. However, the computational challenge of learning chromatin-state models from large numbers of chromatin modification datasets in multiple cell types still requires extensive bioinformatics expertise. To address this challenge, we developed ChromHMM, an automated computational system for learning chromatin states, characterizing their biological functions and correlations with large-scale functional datasets and visualizing the resulting genome-wide maps of chromatin-state annotations.en_US
dc.description.sponsorshipMassachusetts Institute of Technology. Computational and Systems Biology Initiativeen_US
dc.description.sponsorshipNational Science Foundation (U.S.) (postdoctoral fellowship 0905968)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1-RC1- HG005334)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (1 U54 HG004570)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/nmeth.1906en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.rights.urien_US
dc.sourcePMCen_US
dc.titleChromHMM: automating chromatin-state discovery and characterizationen_US
dc.typeArticleen_US
dc.identifier.citationErnst, Jason, and Manolis Kellis. “ChromHMM: Automating Chromatin-State Discovery and Characterization.” Nature Methods 9, no. 3 (February 28, 2012): 215–216.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorErnst, Jasonen_US
dc.contributor.mitauthorKellis, Manolisen_US
dc.relation.journalNature Methodsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsErnst, Jason; Kellis, Manolisen_US
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record