Show simple item record

dc.contributor.authorShin, Su Ryon
dc.contributor.authorJung, Sung Mi
dc.contributor.authorZalabany, Momen
dc.contributor.authorKim, Keekyoung
dc.contributor.authorZorlutuna, Pinar
dc.contributor.authorKim, Sang bok
dc.contributor.authorNikkhah, Mehdi
dc.contributor.authorKhabiry, Masoud
dc.contributor.authorAzize, Mohamed
dc.contributor.authorKong, Jing
dc.contributor.authorWan, Kai-tak
dc.contributor.authorPalacios, Tomas
dc.contributor.authorDokmeci, Mehmet
dc.contributor.authorBae, Hojae
dc.contributor.authorTang, Xiaowu (Shirley)
dc.contributor.authorKhademhosseini, Ali
dc.date.accessioned2014-05-22T20:31:23Z
dc.date.available2014-05-22T20:31:23Z
dc.date.issued2013-03
dc.date.submitted2012-12
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/1721.1/87112
dc.description.abstractWe engineered functional cardiac patches by seeding neonatal rat cardiomyocytes onto carbon nanotube (CNT)-incorporated photo-cross-linkable gelatin methacrylate (GelMA) hydrogels. The resulting cardiac constructs showed excellent mechanical integrity and advanced electrophysiological functions. Specifically, myocardial tissues cultured on 50 μm thick CNT-GelMA showed 3 times higher spontaneous synchronous beating rates and 85% lower excitation threshold, compared to those cultured on pristine GelMA hydrogels. Our results indicate that the electrically conductive and nanofibrous networks formed by CNTs within a porous gelatin framework are the key characteristics of CNT-GelMA leading to improved cardiac cell adhesion, organization, and cell–cell coupling. Centimeter-scale patches were released from glass substrates to form 3D biohybrid actuators, which showed controllable linear cyclic contraction/extension, pumping, and swimming actuations. In addition, we demonstrate for the first time that cardiac tissues cultured on CNT-GelMA resist damage by a model cardiac inhibitor as well as a cytotoxic compound. Therefore, incorporation of CNTs into gelatin, and potentially other biomaterials, could be useful in creating multifunctional cardiac scaffolds for both therapeutic purposes and in vitro studies. These hybrid materials could also be used for neuron and other muscle cells to create tissue constructs with improved organization, electroactivity, and mechanical integrity.en_US
dc.description.sponsorshipUnited States. Army Research Office. Institute for Soldier Nanotechnologiesen_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HL092836)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (EB02597)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (AR057837)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (HL099073)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (DMR0847287)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR PECASE Award)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Young Investigator award)en_US
dc.description.sponsorshipNational Research Foundation of Korea (grant (NRF-2010-220-D00014))en_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nn305559jen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleCarbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuatorsen_US
dc.typeArticleen_US
dc.identifier.citationShin, Su Ryon, Sung Mi Jung, Momen Zalabany, Keekyoung Kim, Pinar Zorlutuna, Sang bok Kim, Mehdi Nikkhah, et al. “Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators.” ACS Nano 7, no. 3 (March 26, 2013): 2369–2380.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorShin, Su Ryonen_US
dc.contributor.mitauthorJung, Sung Mien_US
dc.contributor.mitauthorZalabany, Momenen_US
dc.contributor.mitauthorKim, Keekyoungen_US
dc.contributor.mitauthorZorlutuna, Pinaren_US
dc.contributor.mitauthorKim, Sang boken_US
dc.contributor.mitauthorNikkhah, Mehdien_US
dc.contributor.mitauthorAzize, Mohameden_US
dc.contributor.mitauthorKong, Jingen_US
dc.contributor.mitauthorPalacios, Tomasen_US
dc.contributor.mitauthorDokmeci, Mehmeten_US
dc.contributor.mitauthorKhademhosseini, Alien_US
dc.relation.journalACS Nanoen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsShin, Su Ryon; Jung, Sung Mi; Zalabany, Momen; Kim, Keekyoung; Zorlutuna, Pinar; Kim, Sang bok; Nikkhah, Mehdi; Khabiry, Masoud; Azize, Mohamed; Kong, Jing; Wan, Kai-tak; Palacios, Tomas; Dokmeci, Mehmet R.; Bae, Hojae; Tang, Xiaowu (Shirley); Khademhosseini, Alien_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0551-1208
dc.identifier.orcidhttps://orcid.org/0000-0002-2190-563X
dc.identifier.orcidhttps://orcid.org/0000-0002-9950-1387
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record