MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene

Author(s)
Araujo, Paulo Antonio Trinidade; Mafra, Daniela Lopes; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred; ... Show more Show less
Thumbnail
DownloadKong_Unraveling the.pdf (685.2Kb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License http://creativecommons.org/licenses/by-nc-nd/3.0/
Metadata
Show full item record
Abstract
In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS2, WSe2, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.
Date issued
2012-12
URI
http://hdl.handle.net/1721.1/87119
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Physics
Journal
Scientific Reports
Publisher
Nature Publishing Group
Citation
Araujo, Paulo T., Daniela L. Mafra, Kentaro Sato, Riichiro Saito, Jing Kong, and Mildred S. Dresselhaus. “Unraveling the Interlayer-Related Phonon Self-Energy Renormalization in Bilayer Graphene.” Sci. Rep. 2 (December 21, 2012).
Version: Final published version
ISSN
2045-2322

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.