Show simple item record

dc.contributor.authorWang, Han
dc.contributor.authorYu, Lili
dc.contributor.authorLee, Yi-Hsien
dc.contributor.authorShi, Yumeng
dc.contributor.authorHsu, Allen Long
dc.contributor.authorChin, Matthew L.
dc.contributor.authorLi, Lain-Jong
dc.contributor.authorDubey, Madan
dc.contributor.authorKong, Jing
dc.contributor.authorPalacios, Tomas
dc.date.accessioned2014-05-23T15:20:18Z
dc.date.available2014-05-23T15:20:18Z
dc.date.issued2012-09
dc.date.submitted2012-07
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttp://hdl.handle.net/1721.1/87121
dc.description.abstractTwo-dimensional (2D) materials, such as molybdenum disulfide (MoS2), have been shown to exhibit excellent electrical and optical properties. The semiconducting nature of MoS2 allows it to overcome the shortcomings of zero-bandgap graphene, while still sharing many of graphene’s advantages for electronic and optoelectronic applications. Discrete electronic and optoelectronic components, such as field-effect transistors, sensors, and photodetectors made from few-layer MoS2 show promising performance as potential substitute of Si in conventional electronics and of organic and amorphous Si semiconductors in ubiquitous systems and display applications. An important next step is the fabrication of fully integrated multistage circuits and logic building blocks on MoS2 to demonstrate its capability for complex digital logic and high-frequency ac applications. This paper demonstrates an inverter, a NAND gate, a static random access memory, and a five-stage ring oscillator based on a direct-coupled transistor logic technology. The circuits comprise between 2 to 12 transistors seamlessly integrated side-by-side on a single sheet of bilayer MoS2. Both enhancement-mode and depletion-mode transistors were fabricated thanks to the use of gate metals with different work functions.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (Young Investigator Program)en_US
dc.description.sponsorshipMicroelectronics Advanced Research Corporation (MARCO) (Focus Center for Materials, Structure and Device (MARCO MSD))en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF DMR 0845358)en_US
dc.description.sponsorshipUnited States. Army Research Officeen_US
dc.language.isoen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/nl302015ven_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleIntegrated Circuits Based on Bilayer MoSen_US
dc.typeArticleen_US
dc.identifier.citationWang, Han, Lili Yu, Yi-Hsien Lee, Yumeng Shi, Allen Hsu, Matthew L. Chin, Lain-Jong Li, Madan Dubey, Jing Kong, and Tomas Palacios. “ Integrated Circuits Based on Bilayer MoS 2 Transistors .” Nano Lett. 12, no. 9 (September 12, 2012): 4674–4680.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorWang, Hanen_US
dc.contributor.mitauthorYu, Lilien_US
dc.contributor.mitauthorLee, Yi-Hsienen_US
dc.contributor.mitauthorShi, Yumengen_US
dc.contributor.mitauthorHsu, Allen Longen_US
dc.contributor.mitauthorKong, Jingen_US
dc.contributor.mitauthorPalacios, Tomasen_US
dc.relation.journalNano Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsWang, Han; Yu, Lili; Lee, Yi-Hsien; Shi, Yumeng; Hsu, Allen; Chin, Matthew L.; Li, Lain-Jong; Dubey, Madan; Kong, Jing; Palacios, Tomasen_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5777-8364
dc.identifier.orcidhttps://orcid.org/0000-0003-0551-1208
dc.identifier.orcidhttps://orcid.org/0000-0002-2190-563X
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record