Show simple item record

dc.contributor.authorTehar-Zahav, Ofer
dc.contributor.authorSternberg, Zvi
dc.contributor.authorBafrali, Reha
dc.contributor.authorMeade, Roy
dc.contributor.authorRam, Rajeev J.
dc.contributor.authorMehta, Karan Kartik
dc.contributor.authorOrcutt, Jason Scott
dc.date.accessioned2014-05-30T17:14:21Z
dc.date.available2014-05-30T17:14:21Z
dc.date.issued2014-02
dc.date.submitted2013-08
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/87589
dc.description.abstractIntegrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300–9,300; one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems.en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency. Photonically Optimized Embedded Microprocessorsen_US
dc.description.sponsorshipUnited States. Dept. of Energy (Science Graduate Fellowship)en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep04077en_US
dc.rightsCreative Commons Attribution-Noncommercialen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.sourceNature Publishing Groupen_US
dc.titleHigh-Q CMOS-integrated photonic crystal microcavity devicesen_US
dc.typeArticleen_US
dc.identifier.citationMehta, Karan K., Jason S. Orcutt, Ofer Tehar-Zahav, Zvi Sternberg, Reha Bafrali, Roy Meade, and Rajeev J. Ram. “High-Q CMOS-Integrated Photonic Crystal Microcavity Devices.” Sci. Rep. 4 (February 12, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.contributor.mitauthorMehta, Karan Kartiken_US
dc.contributor.mitauthorOrcutt, Jason Scotten_US
dc.contributor.mitauthorRam, Rajeev J.en_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMehta, Karan K.; Orcutt, Jason S.; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0917-7182
dc.identifier.orcidhttps://orcid.org/0000-0003-0420-2235
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record