Show simple item record

dc.contributor.authorBertsimas, Dimitris J.
dc.contributor.authorGoyal, Vineet
dc.date.accessioned2014-06-04T14:25:02Z
dc.date.available2014-06-04T14:25:02Z
dc.date.issued2012-09
dc.date.submitted2012-05
dc.identifier.issn1432-2994
dc.identifier.issn1432-5217
dc.identifier.urihttp://hdl.handle.net/1721.1/87619
dc.description.abstractIn this paper, we consider adjustable robust versions of convex optimization problems with uncertain constraints and objectives and show that under fairly general assumptions, a static robust solution provides a good approximation for these adjustable robust problems. An adjustable robust optimization problem is usually intractable since it requires to compute a solution for all possible realizations of uncertain parameters, while an optimal static solution can be computed efficiently in most cases if the corresponding deterministic problem is tractable. The performance of the optimal static robust solution is related to a fundamental geometric property, namely, the symmetry of the uncertainty set. Our work allows for the constraint and objective function coefficients to be uncertain and for the constraints and objective functions to be convex, thereby providing significant extensions of the results in Bertsimas and Goyal (Math Oper Res 35:284–305, 2010) and Bertsimas et al. (Math Oper Res 36: 24–54, 2011b) where only linear objective and linear constraints were considered. The models in this paper encompass a wide variety of problems in revenue management, resource allocation under uncertainty, scheduling problems with uncertain processing times, semidefinite optimization among many others. To the best of our knowledge, these are the first approximation bounds for adjustable robust convex optimization problems in such generality.en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF Grant CMMI-1201116)en_US
dc.language.isoen_US
dc.publisherSpringer-Verlagen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s00186-012-0405-6en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther univ. web domainen_US
dc.titleOn the approximability of adjustable robust convex optimization under uncertaintyen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, and Vineet Goyal. “On the Approximability of Adjustable Robust Convex Optimization Under Uncertainty.” Mathematical Methods of Operations Research 77, no. 3 (June 2013): 323–343.en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.mitauthorBertsimas, Dimitris J.en_US
dc.relation.journalMathematical Methods of Operations Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsBertsimas, Dimitris; Goyal, Vineeten_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1985-1003
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record