MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Self-folding with shape memory composites

Author(s)
Felton, Samuel M.; Tolley, Michael T.; Shin, ByungHyun; Onal, Cagdas; Demaine, Erik D.; Rus, Daniela L.; Wood, Robert J.; ... Show more Show less
Thumbnail
DownloadDemaine_Self-folding with.pdf (3.769Mb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Origami-inspired manufacturing can produce complex structures and machines by folding two-dimensional composites into three-dimensional structures. This fabrication technique is potentially less expensive, faster, and easier to transport than more traditional machining methods, including 3-D printing. Self-folding enhances this method by minimizing the manual labor involved in folding, allowing for complex geometries and enabling remote or automated assembly. This paper demonstrates a novel method of self-folding hinges using shape memory polymers (SMPs), paper, and resistive circuits to achieve localized and individually addressable folding at low cost. A model for the torque exerted by these composites was developed and validated against experimental data, in order to determine design rules for selecting materials and designing hinges. Torque was shown to increase with SMP thickness, resistive circuit width, and supplied electrical current. This technique was shown to be capable of complex geometries, as well as locking assemblies with sequential folds. Its functionality and low cost make it an ideal basis for a new type of printable manufacturing based on two-dimensional fabrication techniques.
Date issued
2013-08
URI
http://hdl.handle.net/1721.1/87629
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Soft Matter
Publisher
Royal Society of Chemistry
Citation
Felton, Samuel M., Michael T. Tolley, ByungHyun Shin, Cagdas D. Onal, Erik D. Demaine, Daniela Rus, and Robert J. Wood. “Self-Folding with Shape Memory Composites.” Soft Matter 9, no. 32 (2013): 7688.
Version: Author's final manuscript
ISSN
1744-683X
1744-6848

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.