Show simple item record

dc.contributor.authorYu, Tony S.
dc.contributor.authorBulovic, Vladimir
dc.contributor.authorHosoi, Anette E.
dc.date.accessioned2014-06-04T18:34:48Z
dc.date.available2014-06-04T18:34:48Z
dc.date.issued2013-04
dc.date.submitted2013-02
dc.identifier.issn0022-1120
dc.identifier.issn1469-7645
dc.identifier.urihttp://hdl.handle.net/1721.1/87630
dc.description.abstractWe examine solidification in thin liquid films produced by annealing amorphous Alq[subscript 3] (tris-(8-hydroxyquinoline) aluminium) in methanol vapour. Micrographs acquired during annealing capture the evolution of the film: the initially-uniform film breaks up into drops that coarsen, and single crystals of Alq[subscript 3] nucleate randomly on the substrate and grow as slender ‘needles’. The growth of these needles appears to follow power-law behaviour, where the growth exponent, γ, depends on the thickness of the deposited Alq[subscript 3] film. The evolution of the thin film is modelled by a lubrication equation, and an advection–diffusion equation captures the transport of Alq[subscript 3] and methanol within the film. We define a dimensionless transport parameter, α, which is analogous to an inverse Sherwood number and quantifies the relative effects of diffusion- and coarsening-driven advection. For large α-values, the model recovers the theory of one-dimensional, diffusion-driven solidification, such that γ→1/2. For low α-values, the collapse of drops, i.e. coarsening, drives flow and regulates the growth of needles. Within this regime, we identify two relevant limits: needles that are small compared to the typical drop size, and those that are large. Both scaling analysis and simulations of the full model reveal that γ→2/5 for small needles and γ→0.29 for large needles.en_US
dc.language.isoen_US
dc.publisherCambridge University Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1017/jfm.2013.115en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleCoarsening and solidification via solvent-annealing in thin liquid filmsen_US
dc.typeArticleen_US
dc.identifier.citationYu, Tony S., Vladimir Bulović, and A. E. Hosoi. “Coarsening and Solidification via Solvent-Annealing in Thin Liquid Films.” J. Fluid Mech. 723 (May 2013): 69–90. © Cambridge University Press 2013.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorBulovic, Vladimiren_US
dc.relation.journalJournal of Fluid Mechanicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYu, Tony S.; Bulović, Vladimir; Hosoi, A. E.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-0960-2580
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record