MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of tissue preservation on imaging using ultrahigh resolution optical coherence tomography

Author(s)
Hsiung, Pei-Lin; Nambiar, Prashant R.; Fujimoto, James G.
Thumbnail
DownloadHsiung-2005-Effect of tissue pre.pdf (2.313Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Ultrahigh resolution optical coherence tomography (OCT) is an emerging imaging modality that enables noninvasive imaging of tissue with 1- to 3-μm resolutions. Initial OCT studies have typically been performed using harvested tissue specimens (ex vivo). No reports have investigated postexcision tissue degradation on OCT image quality. We investigate the effects of formalin fixation and commonly used cell culture media on tissue optical scattering characteristics in OCT images at different times postexcision compared to in vivo conditions. OCT imaging at 800-nm wavelength with 1.5-μm axial resolution is used to image the hamster cheek pouch in vivo, followed by excision and imaging during preservation in phosphate-buffered saline (PBS), Dulbecco's Modified Eagle's Media (DMEM), and 10% neutral-buffered formalin. Imaging is performed in vivo and at sequential time points postexcision from 15 min to 10 to 18 h. Formalin fixation results in increases in scattering intensity from the muscle layers, as well as shrinkage of the epithelium, muscle, and connective tissue of ∼50%. PBS preservation shows loss of optical contrast within two hours, occurring predominantly in deep muscle and connective tissue. DMEM maintains tissue structure and optical scattering characteristics close to in vivo conditions up to 4 to 6 h after excision and best preserved tissue optical properties when compared to in vivo imaging.
Date issued
2006-01
URI
http://hdl.handle.net/1721.1/87640
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Division of Comparative Medicine; Massachusetts Institute of Technology. Research Laboratory of Electronics
Journal
Journal of Biomedical Optics
Publisher
SPIE
Citation
Hsiung, Pei-Lin, Prashant R. Nambiar, and James G. Fujimoto. “Effect of Tissue Preservation on Imaging Using Ultrahigh Resolution Optical Coherence Tomography.” Journal of Biomedical Optics 10, no. 6 (2005): 064033. © 2005 SPIE
Version: Final published version
ISSN
10833668
1560-2281

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.