MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparing directed efficiency of III-nitride nanowire light-emitting diodes

Author(s)
Gradecak, Silvija; Chesin, Jordan Paul
Thumbnail
DownloadChesin-2014-Comparing directed e.pdf (2.532Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
III-nitride-based nanowires are a promising platform for solid-state lighting. III-nitride nanowires that act as natural waveguides to enhance directed extraction have previously been shown to be free of extended defects even on foreign substrates, such as silicon. While the efficiency of nanowire-based light-emitting diodes (LEDs) has been investigated, there has yet to be a comparison of heterostructures based on nanowires grown in different crystallographic directions. We compared the directed external quantum efficiency (EQE) of III-nitride LEDs on silicon based on axial and radial nanowire heterostructures, considering m- and c-directional nanowires. The directed extraction efficiency was calculated using photonic simulations, and the internal quantum efficiency (IQE) was estimated using the A-B-C model. We found that m-directional axial heterostructures have the highest directed extraction efficiency, due to the strong polarization anisotropy of III-nitrides, and display similar IQE as c-directional axial heterostructures. By combining IQE and directed extraction, a range of directed expected EQEs reveal that m-directional axial heterostructures have EQEs up to three times that of c-directional axial heterostructures, providing guidelines for the design of future nanowire-based LEDs.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/87660
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Journal
Journal of Nanophotonics
Publisher
SPIE
Citation
Chesin, Jordan, and Silvija Gradecak. “Comparing Directed Efficiency of III-Nitride Nanowire Light-Emitting Diodes.” J. Nanophoton 8, no. 1 (February 13, 2014): 083095. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
Version: Final published version
ISSN
1934-2608

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.