MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Limits of local algorithms over sparse random graphs

Author(s)
Gamarnik, David; Sudan, Madhu
Thumbnail
DownloadGamarnik_Limits of local.pdf (235.3Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Local algorithms on graphs are algorithms that run in parallel on the nodes of a graph to compute some global structural feature of the graph. Such algorithms use only local information available at nodes to determine local aspects of the global structure, while also potentially using some randomness. Research over the years has shown that such algorithms can be surprisingly powerful in terms of computing structures like large independent sets in graphs locally. These algorithms have also been implicitly considered in the work on graph limits, where a conjecture due to Hatami, Lovász and Szegedy [17] implied that local algorithms may be able to compute near-maximum independent sets in (sparse) random d-regular graphs. In this paper we refute this conjecture and show that every independent set produced by local algorithms is smaller that the largest one by a multiplicative factor of at least 1/2+1/(2√2) ≈ .853, asymptotically as d → ∞. Our result is based on an important clustering phenomena predicted first in the literature on spin glasses, and recently proved rigorously for a variety of constraint satisfaction problems on random graphs. Such properties suggest that the geometry of the solution space can be quite intricate. The specific clustering property, that we prove and apply in this paper shows that typically every two large independent sets in a random graph either have a significant intersection, or have a nearly empty intersection. As a result, large independent sets are clustered according to the proximity to each other. While the clustering property was postulated earlier as an obstruction for the success of local algorithms, such as for example, the Belief Propagation algorithm, our result is the first one where the clustering property is used to formally prove limits on local algorithms.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/87683
Department
Sloan School of Management
Journal
Proceedings of the 5th Conference on Innovations in Theoretical Computer Science - ITCS '14
Publisher
Association for Computing Machinery
Citation
Gamarnik, David, and Madhu Sudan. “Limits of Local Algorithms over Sparse Random Graphs.” Proceedings of the 5th Conference on Innovations in Theoretical Computer Science - ITCS ’14 (2014), Jan. 12-14, 2014, Princeton, New Jersey, USA.
Version: Author's final manuscript
ISBN
9781450326988

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.