Show simple item record

dc.contributor.authorHollinger, Geoffrey A.
dc.contributor.authorEnglot, Brendan J.
dc.contributor.authorHover, Franz S.
dc.contributor.authorMitra, Urbashi
dc.contributor.authorSukhatme, Gaurav S.
dc.date.accessioned2014-06-11T14:50:21Z
dc.date.available2014-06-11T14:50:21Z
dc.date.issued2012-11
dc.identifier.issn0278-3649
dc.identifier.issn1741-3176
dc.identifier.urihttp://hdl.handle.net/1721.1/87731
dc.description.abstractWe discuss the problem of inspecting an underwater structure, such as a submerged ship hull, with an autonomous underwater vehicle (AUV). Unlike a large body of prior work, we focus on planning the views of the AUV to improve the quality of the inspection, rather than maximizing the accuracy of a given data stream. We formulate the inspection planning problem as an extension to Bayesian active learning, and we show connections to recent theoretical guarantees in this area. We rigorously analyze the benefit of adaptive re-planning for such problems, and we prove that the potential benefit of adaptivity can be reduced from an exponential to a constant factor by changing the problem from cost minimization with a constraint on information gain to variance reduction with a constraint on cost. Such analysis allows the use of robust, non-adaptive planning algorithms that perform competitively with adaptive algorithms. Based on our analysis, we propose a method for constructing 3D meshes from sonar-derived point clouds, and we introduce uncertainty modeling through non-parametric Bayesian regression. Finally, we demonstrate the benefit of active inspection planning using sonar data from ship hull inspections with the Bluefin-MIT Hovering AUV.en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR Grant N00014-09-1-0700)en_US
dc.description.sponsorshipUnited States. Office of Naval Research (ONR Grant N00014-07-1-00738)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant 0831728)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CCR-0120778)en_US
dc.description.sponsorshipNational Science Foundation (U.S.) (NSF grant CNS-1035866)en_US
dc.language.isoen_US
dc.relation.isversionofhttp://dx.doi.org/10.1177/0278364912467485en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Hover via Angie Locknaren_US
dc.titleActive planning for underwater inspection and the benefit of adaptivityen_US
dc.typeArticleen_US
dc.identifier.citationHollinger, G. A., B. Englot, F. S. Hover, U. Mitra, and G. S. Sukhatme. “Active Planning for Underwater Inspection and the Benefit of Adaptivity.” The International Journal of Robotics Research 32, no. 1 (January 1, 2013): 3–18.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.approverHover, Franz S.en_US
dc.contributor.mitauthorEnglot, Brendan J.en_US
dc.contributor.mitauthorHover, Franz S.en_US
dc.relation.journalInternational Journal of Robotics Researchen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHollinger, G. A.; Englot, B.; Hover, F. S.; Mitra, U.; Sukhatme, G. S.en_US
dc.identifier.orcidhttps://orcid.org/0000-0002-2621-7633
dspace.mitauthor.errortrue
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record