MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conformal field theories in a periodic potential: Results from holography and field theory

Author(s)
Chesler, Paul Michael; Lucas, Andrew; Sachdev, Subir
Thumbnail
DownloadChesler-2014-Conformal field theories.pdf (2.087Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We study (2+1)-dimensional conformal field theories (CFTs) with a globally conserved U(1) charge, placed in a chemical potential which is periodically modulated along the spatial direction x with zero average: μ(x)=V cos(kx). The dynamics of such theories depends only on the dimensionless ratio V/k, and we expect that they flow in the infrared to new CFTs whose universality class changes as a function of V/k. We compute the frequency-dependent conductivity of strongly coupled CFTs using holography of the Einstein-Maxwell theory in four-dimensional anti–de Sitter space. We compare the results with the corresponding computation of weakly coupled CFTs, perturbed away from the CFT of free, massless Dirac fermions (which describes graphene at low energies). We find that the results of the two computations have significant qualitative similarities. However, differences do appear in the vicinities of an infinite discrete set of values of V/k: the universality class of the infrared CFT changes at these values in the weakly coupled theory, by the emergence of new zero modes of Dirac fermions which are remnants of local Fermi surfaces. The infrared theory changes continuously in holography, and the classical gravitational theory does not capture the physics of the discrete transition points between the infrared CFTs. We briefly note implications for a nonzero average chemical potential.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/87751
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Journal
Physical Review D
Publisher
American Physical Society
Citation
Chesler, Paul, Andrew Lucas, and Subir Sachdev. “Conformal Field Theories in a Periodic Potential: Results from Holography and Field Theory.” Phys. Rev. D 89, no. 2 (January 2014). © 2014 American Physical Society
Version: Final published version
ISSN
1550-7998
1550-2368

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.