MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemotherapy efficiency increase via shock wave interaction with biological membranes: a molecular dynamics study

Author(s)
Espinosa, Silvia; Asproulis, Nikolaos; Drikakis, Dimitris
Thumbnail
DownloadEspinosa_Chemotherapy efficiency.pdf (4.551Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Application of ultrasound to biological tissues has been identified as a promising cancer treatment technique relying on temporal enhancement of biological membrane permeability via shock wave impact. In the present study, the effects of ultrasonic waves on a 1,2-dipalmitoyl-sn-phosphatidylcholine biological membrane are examined through molecular dynamics simulations. Molecular dynamics methods traditionally employ periodic boundary conditions which, however, restrict the total simulation time to the time required for the shock wave crossing the domain, thus limiting the evaluation of the effects of shock waves on the diffusion properties of the membrane. A novel method that allows capturing both the initial shock wave transit as well as the subsequent longer-timescale diffusion phenomena has been successfully developed, validated and verified via convergence studies. Numerical simulations have been carried out with ultrasonic impulses varying from 0.0 to 0.6 mPa s leading to the conclusion that for impulses ≥0.45 mPa s, no self-recovery of the bilayer is observed and, hence, ultrasound could be applied to the destruction of localized tumor cells. However, for impulses ≤0.3 mPa s, an increase in the transversal diffusivity of the lipids, indicating a consequent enhancement of drug absorption across the membrane, is initially observed followed by a progressive recovery of the initial values, thereby suggesting the advantageous effects of ultrasound on enhancing the chemotherapy efficiency.
Date issued
2013-09
URI
http://hdl.handle.net/1721.1/87765
Department
Massachusetts Institute of Technology. Plasma Science and Fusion Center
Journal
Microfluidics and Nanofluidics
Publisher
Springer-Verlag
Citation
Espinosa, Silvia, Nikolaos Asproulis, and Dimitris Drikakis. “Chemotherapy Efficiency Increase via Shock Wave Interaction with Biological Membranes: a Molecular Dynamics Study.” Microfluid Nanofluid 16, no. 4 (April 2014): 613–622.
Version: Author's final manuscript
ISSN
1613-4982
1613-4990

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.