Global distributions, time series and error characterization of atmospheric ammonia (NH[subscript 3]) from IASI satellite observations
Author(s)
Van Damme, M.; Clarisse, L.; Hurtmans, D. R.; Ngadi, Y.; Clerbaux, C.; Dolman, A. J.; Erisman, J. W.; Coheur, P. -F.; Heald, Colette L.; ... Show more Show less
DownloadDamme-2014-Global distributions.pdf (7.113Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Ammonia (NH[subscript 3]) emissions in the atmosphere have increased substantially over the past decades, largely because of intensive livestock production and use of fertilizers. As a short-lived species, NH[subscript 3] is highly variable in the atmosphere and its concentration is generally small, except near local sources. While ground-based measurements are possible, they are challenging and sparse. Advanced infrared sounders in orbit have recently demonstrated their capability to measure NH[subscript 3], offering a new tool to refine global and regional budgets. In this paper we describe an improved retrieval scheme of NH[subscript 3] total columns from the measurements of the Infrared Atmospheric Sounding Interferometer (IASI). It exploits the hyperspectral character of this instrument by using an extended spectral range (800–1200 cm[superscript −1]) where NH[subscript 3] is optically active. This scheme consists of the calculation of a dimensionless spectral index from the IASI level1C radiances, which is subsequently converted to a total NH[subscript 3] column using look-up tables built from forward radiative transfer model simulations. We show how to retrieve the NH[subscript 3] total columns from IASI quasi-globally and twice daily above both land and sea without large computational resources and with an improved detection limit. The retrieval also includes error characterization of the retrieved columns. Five years of IASI measurements (1 November 2007 to 31 October 2012) have been processed to acquire the first global and multiple-year data set of NH[subscript 3] total columns, which are evaluated and compared to similar products from other retrieval methods. Spatial distributions from the five years data set are provided and analyzed at global and regional scales. In particular, we show the ability of this method to identify smaller emission sources than those previously reported, as well as transport patterns over the ocean. The five-year time series is further examined in terms of seasonality and interannual variability (in particular as a function of fire activity) separately for the Northern and Southern Hemispheres.
Date issued
2014-03Department
Massachusetts Institute of Technology. Department of Civil and Environmental EngineeringJournal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Van Damme, M., L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J. W. Erisman, and P. F. Coheur. “Global Distributions, Time Series and Error Characterization of Atmospheric Ammonia (NH3) from IASI Satellite Observations.” Atmospheric Chemistry and Physics 14, no. 6 (March 21, 2014): 2905–2922.
Version: Final published version
ISSN
1680-7324
1680-7316