MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods

Author(s)
Rigby, M.; Zammit-Mangion, A.; Manning, Alistair J.; Fraser, P. J.; Harth, C. M.; Kim, K.-R.; Krummel, P. B.; Li, S.; O'Doherty, Simon; Park, S.; Salameh, P. K.; Steele, L. P.; Weiss, R. F.; Ganesan, Anita Lakshmi; Prinn, Ronald G.; Muhle, Jens; ... Show more Show less
Thumbnail
DownloadGanesan-2014-Characterization of.pdf (3.157Mb)
PUBLISHER_CC

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
We present a hierarchical Bayesian method for atmospheric trace gas inversions. This method is used to estimate emissions of trace gases as well as "hyper-parameters" that characterize the probability density functions (PDFs) of the a priori emissions and model-measurement covariances. By exploring the space of "uncertainties in uncertainties", we show that the hierarchical method results in a more complete estimation of emissions and their uncertainties than traditional Bayesian inversions, which rely heavily on expert judgment. We present an analysis that shows the effect of including hyper-parameters, which are themselves informed by the data, and show that this method can serve to reduce the effect of errors in assumptions made about the a priori emissions and model-measurement uncertainties. We then apply this method to the estimation of sulfur hexafluoride (SF[subscript 6]) emissions over 2012 for the regions surrounding four Advanced Global Atmospheric Gases Experiment (AGAGE) stations. We find that improper accounting of model representation uncertainties, in particular, can lead to the derivation of emissions and associated uncertainties that are unrealistic and show that those derived using the hierarchical method are likely to be more representative of the true uncertainties in the system. We demonstrate through this SF[subscript 6] case study that this method is less sensitive to outliers in the data and to subjective assumptions about a priori emissions and model-measurement uncertainties than traditional methods.
Date issued
2014-04
URI
http://hdl.handle.net/1721.1/88009
Department
Massachusetts Institute of Technology. Center for Global Change Science
Journal
Atmospheric Chemistry and Physics
Publisher
Copernicus GmbH
Citation
Ganesan, A. L., M. Rigby, A. Zammit-Mangion, A. J. Manning, R. G. Prinn, P. J. Fraser, C. M. Harth, et al. “Characterization of Uncertainties in Atmospheric Trace Gas Inversions Using Hierarchical Bayesian Methods.” Atmospheric Chemistry and Physics 14, no. 8 (April 17, 2014): 3855–3864.
Version: Final published version
ISSN
1680-7324
1680-7316

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.