Show simple item record

dc.contributor.authorKhan, Sheraz
dc.contributor.authorLefevre, Julien
dc.contributor.authorBaillet, Sylvain
dc.contributor.authorMichmizos, Konstantinos
dc.contributor.authorGanesan, Santosh
dc.contributor.authorKitzbichler, Manfred G.
dc.contributor.authorZetino, Manuel
dc.contributor.authorHamalainen, Matti S.
dc.contributor.authorPapadelis, Christos
dc.contributor.authorKenet, Tal
dc.date.accessioned2014-06-20T16:58:57Z
dc.date.available2014-06-20T16:58:57Z
dc.date.issued2014-05
dc.date.submitted2014-03
dc.identifier.issn1662-5161
dc.identifier.urihttp://hdl.handle.net/1721.1/88051
dc.description.abstractDistributed cortical solutions of magnetoencephalography (MEG) and electroencephalography (EEG) exhibit complex spatial and temporal dynamics. The extraction of patterns of interest and dynamic features from these cortical signals has so far relied on the expertise of investigators. There is a definite need in both clinical and neuroscience research for a method that will extract critical features from high-dimensional neuroimaging data in an automatic fashion. We have previously demonstrated the use of optical flow techniques for evaluating the kinematic properties of motion field projected on non-flat manifolds like in a cortical surface. We have further extended this framework to automatically detect features in the optical flow vector field by using the modified and extended 2-Riemannian Helmholtz–Hodge decomposition (HHD). Here, we applied these mathematical models on simulation and MEG data recorded from a healthy individual during a somatosensory experiment and an epilepsy pediatric patient during sleep. We tested whether our technique can automatically extract salient dynamical features of cortical activity. Simulation results indicated that we can precisely reproduce the simulated cortical dynamics with HHD; encode them in sparse features and represent the propagation of brain activity between distinct cortical areas. Using HHD, we decoded the somatosensory N20 component into two HHD features and represented the dynamics of brain activity as a traveling source between two primary somatosensory regions. In the epilepsy patient, we displayed the propagation of the epileptic activity around the margins of a brain lesion. Our findings indicate that HHD measures computed from cortical dynamics can: (i) quantitatively access the cortical dynamics in both healthy and disease brain in terms of sparse features and dynamic brain activity propagation between distinct cortical areas, and (ii) facilitate a reproducible, automated analysis of experimental and clinical MEG/EEG source imaging data.en_US
dc.description.sponsorshipNancy Lurie Marks Family Foundationen_US
dc.description.sponsorshipSimons Foundationen_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NIBIB:5R01EB009048)en_US
dc.description.sponsorshipNational Institute for Biomedical Imaging and Bioengineering (U.S.) (NIBIB:P41RR014075)en_US
dc.description.sponsorshipFonds de la recherche en santé du Québec (Senior-Scientist Salary Award, Quebec Fund for Health Research)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (NIH 2R01EB009048-05)en_US
dc.description.sponsorshipNatural Sciences and Engineering Research Council of Canada (Discovery Grant)en_US
dc.language.isoen_US
dc.publisherFrontiers Research Foundationen_US
dc.relation.isversionofhttp://dx.doi.org/10.3389/fnhum.2014.00338en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceFrontiers Research Foundationen_US
dc.titleEncoding Cortical Dynamics in Sparse Featuresen_US
dc.typeArticleen_US
dc.identifier.citationKhan, Sheraz, Julien Lefevre, Sylvain Baillet, Konstantinos P. Michmizos, Santosh Ganesan, Manfred G. Kitzbichler, Manuel Zetino, Matti S. Hamalainen, Christos Papadelis, and Tal Kenet. “Encoding Cortical Dynamics in Sparse Features.” Frontiers in Human Neuroscience 8 (May 23, 2014).en_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.mitauthorKhan, Sherazen_US
dc.contributor.mitauthorMichmizos, Konstantinosen_US
dc.relation.journalFrontiers in Human Neuroscienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsKhan, Sheraz; Lefèvre, Julien; Baillet, Sylvain; Michmizos, Konstantinos P.; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Hämäläinen, Matti S.; Papadelis, Christos; Kenet, Talen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1967-7436
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record