Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices
Author(s)
Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F.; Ross, Caroline A.; Jiang, Peng; ... Show more Show less
DownloadBi-2013-Magneto-optical thin.pdf (2.040Mb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4)O3−δ and polycrystalline (CeY2)Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2)Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.
Date issued
2013-11Department
Lincoln Laboratory; Massachusetts Institute of Technology. Department of Materials Science and EngineeringJournal
Materials
Publisher
MDPI AG
Citation
Bi, Lei, Juejun Hu, Peng Jiang, Hyun Kim, Dong Kim, Mehmet Onbasli, Gerald Dionne, and Caroline Ross. “Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.” Materials 6, no. 11 (November 8, 2013): 5094–5117.
Version: Final published version
ISSN
1996-1944