Show simple item record

dc.contributor.authorSukup-Jackson, Michelle R.
dc.contributor.authorKiraly, Orsolya
dc.contributor.authorNa, Li
dc.contributor.authorRowland, Elizabeth A.
dc.contributor.authorWinther, Kelly E.
dc.contributor.authorChow, Danielle N.
dc.contributor.authorKimoto, Takafumi
dc.contributor.authorMatsuguchi, Tetsuya
dc.contributor.authorJonnalagadda, Vidya S.
dc.contributor.authorMaklakova, Vilena I.
dc.contributor.authorSingh, Vijay R.
dc.contributor.authorWadduwage, Dushan N.
dc.contributor.authorRajapakse, Jagath
dc.contributor.authorSo, Peter T. C.
dc.contributor.authorCollier, Lara S.
dc.contributor.authorEngelward, Bevin P.
dc.contributor.authorKay, Jennifer Elizabeth
dc.date.accessioned2014-06-30T13:17:36Z
dc.date.available2014-06-30T13:17:36Z
dc.date.issued2014-06
dc.date.submitted2013-07
dc.identifier.issn1553-7404
dc.identifier.issn1553-7390
dc.identifier.urihttp://hdl.handle.net/1721.1/88118
dc.description.abstractHomologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26 Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Program Project Grant P01-CA026731)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (R33-CA112151)en_US
dc.description.sponsorshipNational Institute of Environmental Health Sciences (P30-ES002109)en_US
dc.description.sponsorshipSingapore-MIT Alliance for Research and Technology Centeren_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (P41-EB015871)en_US
dc.description.sponsorshipNational Cancer Institute (U.S.) (P30-CA014051)en_US
dc.language.isoen_US
dc.publisherPublic Library of Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1371/journal.pgen.1004299en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourcePublic Library of Scienceen_US
dc.titleRosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals In Vivoen_US
dc.typeArticleen_US
dc.identifier.citationSukup-Jackson, Michelle R., Orsolya Kiraly, Jennifer E. Kay, Li Na, Elizabeth A. Rowland, Kelly E. Winther, Danielle N. Chow, et al. “Rosa26-GFP Direct Repeat (RaDR-GFP) Mice Reveal Tissue- and Age-Dependence of Homologous Recombination in Mammals In Vivo.” Edited by Peter McKinnon. PLoS Genet 10, no. 6 (June 5, 2014): e1004299.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorSukup-Jackson, Michelle R.en_US
dc.contributor.mitauthorKiraly, Orsolyaen_US
dc.contributor.mitauthorKay, Jennifer Elizabethen_US
dc.contributor.mitauthorRowland, Elizabeth A.en_US
dc.contributor.mitauthorWinther, Kelly E.en_US
dc.contributor.mitauthorChow, Danielle N.en_US
dc.contributor.mitauthorKimoto, Takafumien_US
dc.contributor.mitauthorMatsuguchi, Tetsuyaen_US
dc.contributor.mitauthorJonnalagadda, Vidya S.en_US
dc.contributor.mitauthorSo, Peter T. C.en_US
dc.contributor.mitauthorEngelward, Bevin P.en_US
dc.relation.journalPLoS Geneticsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsSukup-Jackson, Michelle R.; Kiraly, Orsolya; Kay, Jennifer E.; Na, Li; Rowland, Elizabeth A.; Winther, Kelly E.; Chow, Danielle N.; Kimoto, Takafumi; Matsuguchi, Tetsuya; Jonnalagadda, Vidya S.; Maklakova, Vilena I.; Singh, Vijay R.; Wadduwage, Dushan N.; Rajapakse, Jagath; So, Peter T. C.; Collier, Lara S.; Engelward, Bevin P.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-5891-0689
dc.identifier.orcidhttps://orcid.org/0000-0003-4698-6488
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record