MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale fingerprinting of neuronal functional connectivity

Author(s)
Song, Gang; Tin, Chung; Poon, Chi-Sang
Thumbnail
DownloadMultiscale fingerprinting of neuronal functional connectivity (1.525Mb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Current cellular-based connectomics approaches aim to delineate the functional or structural organizations of mammalian brain circuits through neuronal activity mapping and/or axonal tracing. To discern possible connectivity between functionally identified neurons in widely distributed brain circuits, reliable and efficient network-based approaches of cross-registering or cross-correlating such functional-structural data are essential. Here, a novel cross-correlation approach that exploits multiple timing-specific, response-specific and cell-specific neuronal characteristics as coincident fingerprint markers at the systems, network and cellular levels is proposed. Application of this multiscale temporal-cellular coincident fingerprinting assay to the respiratory central pattern generator network in rats revealed a descending excitatory pathway with characteristic activity pattern and projecting from a distinct neuronal population in pons to its counterparts in medulla that control the post-inspiratory phase of the respiratory rhythm important for normal breathing, airway protection and respiratory-vocalization coordination. This enabling neurotracing approach may prove valuable for functional connectivity mapping of other brain circuits.
Date issued
2014-12
URI
http://hdl.handle.net/1721.1/88126
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science
Journal
Brain Structure and Function
Publisher
Springer-Verlag
Citation
Song, Gang, Chung Tin, and Chi-Sang Poon. "Multiscale fingerprinting of neuronal functional connectivity." Brain Structure and Function, December 2014.
Version: Author's final manuscript
ISSN
1863-2653
1863-2661

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.