MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Spatial Correlation of DNA Deformation: DNA Allostery in Protein Binding

Author(s)
Xu, Xinliang; Ge, Hao; Gu, Chan; Gao, Yi Qin; Wang, Siyuan S.; Thio, Beng Joo Reginald; Hynes, James T.; Xie, X. Sunney; Cao, Jianshu; ... Show more Show less
Thumbnail
DownloadFinal_JPC.pdf (1019.Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We report a study of DNA deformations using a coarse-grained mechanical model and quantitatively interpret the allosteric effects in protein–DNA binding affinity. A recent single-molecule study (Kim et al. Science 2013, 339, 816) showed that when a DNA molecule is deformed by specific binding of a protein, the binding affinity of a second protein separated from the first protein is altered. Experimental observations together with molecular dynamics simulations suggested that the origin of the DNA allostery is related to the observed deformation of DNA’s structure, in particular, the major groove width. To unveil and quantify the underlying mechanism for the observed major groove deformation behavior related to the DNA allostery, here we provide a simple but effective analytical model where DNA deformations upon protein binding are analyzed and spatial correlations of local deformations along the DNA are examined. The deformation of the DNA base orientations, which directly affect the major groove width, is found in both an analytical derivation and coarse-grained Monte Carlo simulations. This deformation oscillates with a period of 10 base pairs with an amplitude decaying exponentially from the binding site with a decay length lD ≈10 base pairs as a result of the balance between two competing terms in DNA base-stacking energy. This length scale is in agreement with that reported from the single-molecule experiment. Our model can be reduced to the worm-like chain form at length scales larger than lP but is able to explain DNA’s mechanical properties on shorter length scales, in particular, the DNA allostery of protein–DNA interactions.
Date issued
2013-10
URI
http://hdl.handle.net/1721.1/88163
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Journal of Physical Chemistry B
Publisher
American Chemical Society
Citation
Xu, Xinliang, Hao Ge, Chan Gu, Yi Qin Gao, Siyuan S. Wang, Beng Joo Reginald Thio, James T. Hynes, X. Sunney Xie, and Jianshu Cao. “Modeling Spatial Correlation of DNA Deformation: DNA Allostery in Protein Binding.” The Journal of Physical Chemistry B 117, no. 42 (October 24, 2013): 13378–13387.
Version: Author's final manuscript
ISSN
1520-6106
1520-5207

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.