MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization

Author(s)
Petra, Cosmin G.; Schenk, Olaf; Gäertner, Klaus; Lubin, Miles C
Thumbnail
DownloadPetra-2014-An augmented incompl.pdf (849.9Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a scalable approach and implementation for solving stochastic optimization problems on high-performance computers. In this work we revisit the sparse linear algebra computations of the parallel solver PIPS with the goal of improving the shared-memory performance and decreasing the time to solution. These computations consist of solving sparse linear systems with multiple sparse right-hand sides and are needed in our Schur-complement decomposition approach to compute the contribution of each scenario to the Schur matrix. Our novel approach uses an incomplete augmented factorization implemented within the PARDISO linear solver and an outer BiCGStab iteration to efficiently absorb pivot perturbations occurring during factorization. This approach is capable of both efficiently using the cores inside a computational node and exploiting sparsity of the right-hand sides. We report on the performance of the approach on high-performance computers when solving stochastic unit commitment problems of unprecedented size (billions of variables and constraints) that arise in the optimization and control of electrical power grids. Our numerical experiments suggest that supercomputers can be efficiently used to solve power grid stochastic optimization problems with thousands of scenarios under the strict “real-time” requirements of power grid operators. To our knowledge, this has not been possible prior to the present work.
Date issued
2014-01
URI
http://hdl.handle.net/1721.1/88177
Department
Massachusetts Institute of Technology. Operations Research Center; Sloan School of Management
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Petra, Cosmin G., Olaf Schenk, Miles Lubin, and Klaus Gäertner. “An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization.” SIAM Journal on Scientific Computing 36, no. 2 (January 2014): C139–C162. © 2014, Society for Industrial and Applied Mathematics.
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.