MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Space-Time Petrov--Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations

Author(s)
Yano, Masayuki
Thumbnail
DownloadYano-2014-A space-time Petrov.pdf (632.4Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We present a space-time certified reduced basis method for long-time integration of parametrized parabolic equations with quadratic nonlinearity which admit an affine decomposition in parameter but with no restriction on coercivity of the linearized operator. We first consider a finite element discretization based on discontinuous Galerkin time integration and introduce associated Petrov--Galerkin space-time trial- and test-space norms that yield optimal and asymptotically mesh independent stability constants. We then employ an $hp$ Petrov--Galerkin (or minimum residual) space-time reduced basis approximation. We provide the Brezzi--Rappaz--Raviart a posteriori error bounds which admit efficient offline-online computational procedures for the three key ingredients: the dual norm of the residual, an inf-sup lower bound, and the Sobolev embedding constant. The latter are based, respectively, on a more round-off resistant residual norm evaluation procedure, a variant of the successive constraint method, and a time-marching implementation of a fixed-point iteration of the embedding constant for the discontinuous Galerkin norm. Finally, we apply the method to a natural convection problem governed by the Boussinesq equations. The result indicates that the space-time formulation enables rapid and certified characterization of moderate-Grashof-number flows exhibiting steady periodic responses. However, the space-time reduced basis convergence is slow, and the Brezzi--Rappaz--Raviart threshold condition is rather restrictive, such that offline effort will be acceptable only for very few parameters.
Date issued
2014-02
URI
http://hdl.handle.net/1721.1/88191
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
SIAM Journal on Scientific Computing
Publisher
Society for Industrial and Applied Mathematics
Citation
Yano, Masayuki. “A Space-Time Petrov--Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations.” SIAM Journal on Scientific Computing 36, no. 1 (February 20, 2014): A232–A266. © 2014, Society for Industrial and Applied Mathematics
Version: Final published version
ISSN
1064-8275
1095-7197

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.