The predictability of consumer visitation patterns
Author(s)
Llorente, Alejandro; Cebrian, Manuel; Moro, Esteban; Krumme, Katherine Ann; Pentland, Alex Paul
DownloadKrumme-2013-The predictability of.pdf (645.1Kb)
PUBLISHER_CC
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
We consider hundreds of thousands of individual economic transactions to ask: how predictable are consumers in their merchant visitation patterns? Our results suggest that, in the long-run, much of our seemingly elective activity is actually highly predictable. Notwithstanding a wide range of individual preferences, shoppers share regularities in how they visit merchant locations over time. Yet while aggregate behavior is largely predictable, the interleaving of shopping events introduces important stochastic elements at short time scales. These short- and long-scale patterns suggest a theoretical upper bound on predictability, and describe the accuracy of a Markov model in predicting a person's next location. We incorporate population-level transition probabilities in the predictive models, and find that in many cases these improve accuracy. While our results point to the elusiveness of precise predictions about where a person will go next, they suggest the existence, at large time-scales, of regularities across the population.
Date issued
2013-04Department
Massachusetts Institute of Technology. Media Laboratory; Program in Media Arts and Sciences (Massachusetts Institute of Technology)Journal
Scientific Reports
Publisher
Nature Publishing Group
Citation
Krumme, Coco, Alejandro Llorente, Manuel Cebrian, Alex (“Sandy”) Pentland, and Esteban Moro. “The Predictability of Consumer Visitation Patterns.” Sci. Rep. 3 (April 18, 2013).
Version: Final published version
ISSN
2045-2322