Show simple item record

dc.contributor.authorMcNerny, Daniel Q.
dc.contributor.authorViswanath, B.
dc.contributor.authorCopic, Davor
dc.contributor.authorLaye, Fabrice R.
dc.contributor.authorBrieland-Shoultz, Anna C.
dc.contributor.authorPolsen, Erik S.
dc.contributor.authorVeerasamy, Vijayen S.
dc.contributor.authorProhoda, Christophor George
dc.contributor.authorDee, Nicholas Thomas
dc.contributor.authorHart, Anastasios John
dc.date.accessioned2014-07-08T19:28:52Z
dc.date.available2014-07-08T19:28:52Z
dc.date.issued2014-05
dc.date.submitted2014-03
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/88210
dc.description.abstractWe demonstrate direct production of graphene on SiO[subscript 2] by CVD growth of graphene at the interface between a Ni film and the SiO[subscript 2] substrate, followed by dry mechanical delamination of the Ni using adhesive tape. This result is enabled by understanding of the competition between stress evolution and microstructure development upon annealing of the Ni prior to the graphene growth step. When the Ni film remains adherent after graphene growth, the balance between residual stress and adhesion governs the ability to mechanically remove the Ni after the CVD process. In this study the graphene on SiO[subscript 2] comprises micron-scale domains, ranging from monolayer to multilayer. The graphene has >90% coverage across centimeter-scale dimensions, limited by the size of our CVD chamber. Further engineering of the Ni film microstructure and stress state could enable manufacturing of highly uniform interfacial graphene followed by clean mechanical delamination over practically indefinite dimensions. Moreover, our findings suggest that preferential adhesion can enable production of 2-D materials directly on application-relevant substrates. This is attractive compared to transfer methods, which can cause mechanical damage and leave residues behind.en_US
dc.description.sponsorshipGuardian Industriesen_US
dc.description.sponsorshipNational Science Foundation (U.S.). Graduate Research Fellowship Programen_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep05049en_US
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceNature Publishing Groupen_US
dc.titleDirect fabrication of graphene on SiO[subscript 2] enabled by thin film stress engineeringen_US
dc.typeArticleen_US
dc.identifier.citationMcNerny, Daniel Q., B. Viswanath, Davor Copic, Fabrice R. Laye, Christophor Prohoda, Anna C. Brieland-Shoultz, Erik S. Polsen, Nicholas T. Dee, Vijayen S. Veerasamy, and A. John Hart. “Direct Fabrication of Graphene on SiO2 Enabled by Thin Film Stress Engineering.” Sci. Rep. 4 (May 23, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.contributor.mitauthorViswanath, B.en_US
dc.contributor.mitauthorProhoda, Christophor Georgeen_US
dc.contributor.mitauthorDee, Nicholas Thomasen_US
dc.contributor.mitauthorHart, Anastasios Johnen_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsMcNerny, Daniel Q.; Viswanath, B.; Copic, Davor; Laye, Fabrice R.; Prohoda, Christophor; Brieland-Shoultz, Anna C.; Polsen, Erik S.; Dee, Nicholas T.; Veerasamy, Vijayen S.; Hart, A. Johnen_US
dc.identifier.orcidhttps://orcid.org/0000-0002-1532-2083
dc.identifier.orcidhttps://orcid.org/0000-0002-8633-3564
dc.identifier.orcidhttps://orcid.org/0000-0002-7372-3512
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record