Show simple item record

dc.contributor.authorArmond, Jonathan W.
dc.contributor.authorSaha, Krishanu
dc.contributor.authorRana, Anas A.
dc.contributor.authorOates, Chris J.
dc.contributor.authorJaenisch, Rudolf
dc.contributor.authorNicodemi, Mario
dc.contributor.authorMukherjee, Sach
dc.date.accessioned2014-07-08T19:40:12Z
dc.date.available2014-07-08T19:40:12Z
dc.date.issued2014-01
dc.date.submitted2013-06
dc.identifier.issn2045-2322
dc.identifier.urihttp://hdl.handle.net/1721.1/88212
dc.description.abstractMany biological processes, including differentiation, reprogramming, and disease transformations, involve transitions of cells through distinct states. Direct, unbiased investigation of cell states and their transitions is challenging due to several factors, including limitations of single-cell assays. Here we present a stochastic model of cellular transitions that allows underlying single-cell information, including cell-state-specific parameters and rates governing transitions between states, to be estimated from genome-wide, population-averaged time-course data. The key novelty of our approach lies in specifying latent stochastic models at the single-cell level, and then aggregating these models to give a likelihood that links parameters at the single-cell level to observables at the population level. We apply our approach in the context of reprogramming to pluripotency. This yields new insights, including profiles of two intermediate cell states, that are supported by independent single-cell studies. Our model provides a general conceptual framework for the study of cell transitions, including epigenetic transformations.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/srep03692en_US
dc.rightsCreative Commons Attribution-NonCommercial-ShareAlike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0en_US
dc.sourceNature Publishing Groupen_US
dc.titleA stochastic model dissects cell states in biological transition processesen_US
dc.typeArticleen_US
dc.identifier.citationArmond, Jonathan W., Krishanu Saha, Anas A. Rana, Chris J. Oates, Rudolf Jaenisch, Mario Nicodemi, and Sach Mukherjee. “A Stochastic Model Dissects Cell States in Biological Transition Processes.” Sci. Rep. 4 (January 17, 2014).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biologyen_US
dc.contributor.departmentWhitehead Institute for Biomedical Researchen_US
dc.contributor.mitauthorJaenisch, Rudolfen_US
dc.relation.journalScientific Reportsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsArmond, Jonathan W.; Saha, Krishanu; Rana, Anas A.; Oates, Chris J.; Jaenisch, Rudolf; Nicodemi, Mario; Mukherjee, Sachen_US
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record